"In The Loop" Testing for Power Electronic Systems IEEE PELS Raleigh Chapter Presentation

electrical engineering software

> Company background

- System-level power conversion design and test tools
- Leveraging system models for control systems development
 - General concepts, Model-In-the-Loop (MIL) and Software-In-the-Loop (SIL)
- Processor-In-the-Loop co-simulation (PIL)
 - High fidelity testing at all switching frequencies
 - Software test points
 - 🕨 Demo
- Hardware-In-the-Loop simulation (HIL)
 - Plant code generation from simulation environment
 - Specialized computer to provide real-time testing harness
 - 🕨 Demo

v<mark>elopment</mark> he-Loop (SIL)

- Plexim was started by 2 power electronics Ph.D. students in 2002
- Independent company, spun-off from ETH Zürich, Switzerland
- Privately owned by founders with headquarters still in Zürich
- US offices in Cambridge, MA and Seattle, WA
- PLECS simulation platform includes:
 - PLECS Blockset and PLECS Standalone as flagship software tools
 - PLECS Coder and PLECS Processor-in-the-Loop available as add-ons
 - PLECS RT Box real-time simulator (2016) and hardware interfaces
- Customers in ~50 countries
- Academic users for coursework and research purposes

PLECS Blockset and PLECS Standalone

Complete multi-domain modeling environments

PLECS PIL (Processor-In-the-Loop)

Co-simulate embedded control code

PLECS Coder

Auto-generation of code for controls and real-time plant models (HIL)

PLECS RT Box

Real-time hardware platform for controller development and validation

Custom development services

Turnkey models, interface hardware, software target packages

PLECS WBS

Teaching and marketing

Power Electronic Systems

Solar Power

Industrial Control - Servo Drive

Power Electronic Systems

9

Leveraging System Models for Control Systems Development

System models:

Create the framework in which control systems are developed

- Quick prototyping of control methods
- Definition of subsystem requirements (e.g. sensor bandwidth and accuracy)
- Facilitate bottom-up software design and validation
 - Provide a platform for developing and testing control software
 - Permit placing software modules "in-the-loop" (SIL, PIL)
 - Allow "in-the-loop" testing of an entire control unit (HIL)

"In-the-Loop" Development & Testing

Controller Design: Conventional Model Analysis

End goal:

Converter (Power hardware)

Initial prototyping:

All built in PC software

Model-In-the-Loop (MIL) Control Implementation Options

Analog controllers with op-amp circuits and transfer functions Continuous and discrete signal processing blocks

- Flexible pulse width modulators included
- State machine block for event driven system design

C-Script block in library

- Custom C code entry and inbuilt compiler
- Advanced functionality and interaction with solver

DLL block for loading compiled object code

- Use external IDE and compile for native simulation host
- Share control logic without disclosing source code

Setup	Code	Setup Code	tos carriger switching ins
Start function code Output function code Update function code Derivative function code Terminate function code 10 #define S_A Output(0) 11 #define S_C Output(1) 12 #define S_C Output(2) 13 #define SSCTOR Output(4) 14 #define TAU_A Output(5) 15 #define TAU_O Output(6)		<pre>Output function code I if (flag1 == 0 as STNC == 1) //detact rising 2 { 3 flag1 = 1; 4 power_loss = LOSS_SUM/TS; 5 LOSS_SUM = 0; 6 } 7 else if (flag1 == 1 as STNC == 0) //reset flag 6 { 9 flag1 = 0; 10 } 11 Output(0) = power_loss; 12 13</pre>	edge of SYNC signal ag when SYNC menches 0
Help Apply	Dancel OK	Help Apply	

🔴 😑 🔁 C-Script-DLL
C-Script
C-Script
DLL >
DLL

Simulation and Modeling of Power Converters

	Circuit Simulator		
	Behavioral Models	Physical Models	
Idea/Concept	 Topology evaluation and comparison Control algorithm prototyping Estimation of efficiency and cooling requirements Refinement of system requirements Subsystem specifications Component pre-selection Cost estimation 		
Design	 Detailed power converter design Control software design and tuning SIL and PIL testing Refined subsystem specifications Cost estimation Drive cycle simulations (efficiency, reliability) FMEA Monte Carlo Analysis 	 Subsystem design (e.g. gate drives Refinement of semiconductor logestimations EMC prediction 	
Testing and Launch	 HIL testing Code coverage testing Calibration and commissioning 		
Continuous Improvement	 Assistance with 8Ds FMEA maintenance Software regression testing 		

els	Finite Element Analysis	
	Creation of equivalent models for magnetic and thermal components	
gate driver) ductor loss	 PCB layout Semiconductor packaging Busbar design Detailed design of magnetics and thermal management EMC prediction 	
	Cost-reduction of magnetic and thermal components	

Controller Design: PIL

Converter

(Power Hardware)

MCU (Ctrl Hardware)

MCU (Ctrl Software)

Read and Override Probes

High-Fidelity Peripheral Model

PLECS PIL Workflow

Idea of PLECS Processor-In-the-loop simulation

- Control code developed in µC-programming environment (i.e. TI's Code Composer Studio) or auto-generated
- Controller running on real processor in stepped mode
- Control code tested with plant simulated in PLECS

Plant simulated in PLECS

Principle of a PIL Simulation - Without Integration

PLECS Model

Principle of a PIL Simulation - With Integration

Principle of a PIL Simulation - Real-Time Operation

Embedded controls often use nested tasks

Task dispatching synchronized with PLECS in PIL mode

- Task synchronization with model calculation
- Communication time needed for data exchange between PLECS and Processor

Principle of a PIL Simulation - Pseudo Real-Time Operation

Co-simulation of PLECS and MCU in PIL mode

Control frozen while PLECS model updates and data is exchanged

Control timing preserved during synchronization

Benefits

- Low cost and barrier to entry
- Allows for arbitrary software test points
- Full fidelity of embedded algorithms at any switching frequency
- High fidelity plant model
- Effects of fixed point calculation in code, controller multithreading
- Facilitates "One Code" approach (same code used for PIL simulation and deployment)
- Reusable plant model
- Pseudo real-time execution facilitates debugging

Challenge

Test only covers software and CPU

PLECS PIL Demo

Grid-tied 3-Level Inverter

Controller Testing: HIL

MCU (Ctrl Hardware)

MCU (Ctrl Hardware)

PLECS RT Box Applications

Hardware-in-the-Loop

Rapid Control Prototyping

PLECS Code Generation Principle

Circuit in continuous State Space

One set of matrices per switch combination

Discretization to discrete State Space

- Model depends on step size T_d
- Physical model states discretized with Tustin method
- Integrators discretized with Forward Euler method

Integration into ANSI-C

- Generic C-Code
- Platform and solver dependent code

RT Box HIL Workflow

Run generated model code with physical controller

PWM Output

Benefits

- Test entire controller unit including software and hardware
- Plant model derived from offline simulation environment (reusable again)
- Intuitive code generation and workflow routine
- Visualize simulation results in the and tune model parameters on the fly

Challenge

Possible limits on complexity of plant model, switching speed

HIL Demo

Summary of PIL vs. HIL Testing

PIL benefits (as compared to HIL)

- Much lower cost
- No limitations on complexity of plant model
- Controls at any switching frequency
- Pseudo real-time execution facilitates debugging
- Suited to software development and testing

HIL benefits (as compared to PIL)

- Required for testing complete controller
- Provides safe alternative to high-power hardware testing
- Can't destroy actual devices and components
- Suited for final verification and validation

electrical engineering software

Plexim G	Plexim, Inc.	
Technopa	rkstrasse 1	5 Upland Ro
CH-8005	Zurich	Cambridge,
Phone	+41 44 533 51 00	Phone -
Email	info@plexim.com	Email i
Web	www.plexim.com	Web v

oad, Suite 4 , MA 02140

+1 617 209 2121 info@plexim.com www.plexim.com

