

Distinguished Lecturer Seminar

Model Predictive Control in Power Electronics: A Critical Review and Recent Industrial Products

Tobias Geyer

ABB Corporate Research ETH Zurich and Stellenbosch University

20 October 2020

Model Predictive Control in Power Electronics Outline

Introduction

- Control and modulation
 - The classic approach in power electronics
- Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)
 Direct model predictive control
- Model predictive pulse pattern control (MP³C)
 Fast control of optimized pulse patterns (OPPs)
- Model predictive control of load commutated inverters (LCI)
 Coordinated control with constraints

Assessment and conclusions

Model Predictive Control in Power Electronics Outline

Introduction

Control and modulation

- The classic approach in power electronics
- Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)
 Direct model predictive control
- Model predictive pulse pattern control (MP³C)
 Fast control of optimized pulse patterns (OPPs)
- Model predictive control of load commutated inverters (LCI)
 Coordinated control with constraints
 - Coordinated control with constraints

Assessment and conclusions

Introduction to Control and Modulation A Simple Control Problem

T. Geyer: MPC in PE 20 Oct. 2020

Introduction to Control and Modulation A Simple Control Problem

A pulse width modulator translates the real-valued input reference v_{conv}^* into switching commands u

Introduction to Control and Modulation A Simple Control Problem

This directly extends to three-phase systems and general loads (such as electrical machines and the grid)

Introduction to Control and Modulation Inner (Current) Control – The Commonly Used Approach

 Split the inner control problem into a current controller and a modulator

=> Hides the switching characteristic from the controller (assuming zero current ripple at the sampling instants)

• Work in a **rotating** coordinate system

=> Turns ac quantities into dc quantities (at steady-state operation)

Current controller:

- Field-oriented or voltage-oriented control (FOC / VOC):
 - PI control
 - Deadbeat control

Current controller and modulator combined:

Direct torque control (DTC) or direct power control (DPC)

Modulator:

- Classic modulation
 - Carrier-based PWM
 - Space vector modulation (SVM)
 - Discontinuous PWM
- "Programmed" modulation
 - Optimized pulse pattern (OPP)
 - Selective harmonic elimination (SHE)

Model Predictive Control in Power Electronics Outline

Introduction

- Control and modulation
 - The classic approach in power electronics
 - Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)
 Direct model predictive control
- Model predictive pulse pattern control (MP³C)
 Fast control of optimized pulse patterns (OPPs)
- Model predictive control of load commutated inverters (LCI)
 Coordinated control with constraints
 - Coordinated control with constraints

Assessment and conclusions

Vision for Power Conversion Control Objectives

Develop **control** methods that **fully utilize** the hardware **capability** of the power electronic system

Minimize harmonic distortions

=> Load-friendly operation

Minimize switching effort (switching frequency / losses)

=> Converter-friendly operation

Vision for Power Conversion Control Objectives

Develop control methods that fully utilize the hardware capability of the power electronic system

Minimize harmonic distortions

=> Load-friendly operation

Minimize switching effort (sw. frequency / losses)

=> Converter-friendly operation

Maximize the dynamic performance

=> Fast power steps and **disturbance rejection**

Ensure operation within safe operating limits
 => High availability

Vision for Power Conversion Control Objectives

Develop control methods that fully utilize the hardware capability of the power electronic system

Minimize harmonic distortions

=> Load-friendly operation

- Minimize switching effort (sw. frequency / losses)
 - => Converter-friendly operation
- Maximize the dynamic performance

=> Fast power steps and **disturbance rejection**

Ensure operation within safe operating limits
 => High availability

Concept: Use a mathematical model of the system to predict its future evolution over a horizon (taking into account constraints) and choose the "best" control input by solving a numerical optimization problem. At the next step, obtain new measurements and re-plan over a shifted horizon.

Key Features:

Internal model: describes the dynamic system behaviour
 => basis for predictions, makes the controller 'smart'

$$\begin{aligned} \boldsymbol{x}(k+1) &= f\big(\boldsymbol{x}(k), \boldsymbol{u}(k)\big) \\ \boldsymbol{y}(k) &= g\big(\boldsymbol{x}(k)\big) \end{aligned}$$

Concept: Use a mathematical model of the system to predict its future evolution over a horizon (taking into account constraints) and choose the "best" control input by solving a numerical optimization problem. At the next step, obtain new measurements and re-plan over a shifted horizon.

Key Features:

- Internal model: describes the dynamic system behaviour
 => basis for predictions, makes the controller 'smart'
- Constraints: describe limits on inputs, states, outputs, including integer constraints

=> constraints are included in the controller synthesis

Concept: Use a mathematical model of the system to predict its future evolution over a horizon (taking into account constraints) and choose the "best" control input by solving a numerical optimization problem. At the next step, obtain new measurements and re-plan over a shifted horizon.

Key Features:

- Internal model: describes the dynamic system behaviour
 => basis for predictions, makes the controller 'smart'
- Constraints: describe limits on inputs, states, outputs, including integer constraints
 - => constraints are included in the controller synthesis
- Cost function: captures the control objectives (deviations from references, etc)

=> controller design and tuning

$$J = \sum_{\ell=k}^{k+N-1} || \, m{i}^*(\ell+1) - \, m{i}(\ell+1) ||_2^2 \, + \lambda_u || m{\Delta} m{u}(\ell) ||_2^2$$

Concept: Use a mathematical model of the system to predict its future evolution over a horizon (taking into account constraints) and choose the "best" control input by solving a numerical optimization problem. At the next step, obtain new measurements and re-plan over a shifted horizon.

Key Features:

- Internal model: describes the dynamic system behaviour
 => basis for predictions, makes the controller 'smart'
- **Constraints:** describe limits on inputs, states, outputs, including integer constraints
 - => constraints are included in the controller synthesis
- **Cost function:** captures the control objectives (deviations from references, etc)

=> controller design and tuning

• Numerical optimization: minimizes the cost function subject to the internal model and constraints

=> yields the optimal control input

Concept: Use a mathematical model of the system to predict its future evolution over a horizon (taking into account constraints) and choose the "best" control input by solving a numerical optimization problem. At the next step, obtain new measurements and re-plan over a shifted horizon.

Key Features:

- Internal model: describes the dynamic system behaviour
 => basis for predictions, makes the controller 'smart'
- **Constraints:** describe limits on inputs, states, outputs, including integer constraints
 - => constraints are included in the controller synthesis
- **Cost function:** captures the control objectives (deviations from references, etc)

=> controller design and tuning

• **Numerical optimization:** minimizes the cost function subject to the internal model and constraints

=> yields the optimal control input

- Receding horizon: applies only the first control action of a long plan and repeats this procedure at the next time step
 - => feedback and robustness

Concept: Use a mathematical model of the system to predict its future evolution over a horizon (taking into account constraints) and choose the "best" control input by solving a numerical optimization problem. At the next step, obtain new measurements and re-plan over a shifted horizon.

Key Features:

- Internal model: describes the dynamic system behaviour
 => basis for predictions, makes the controller 'smart'
- **Constraints:** describe limits on inputs, states, outputs, including integer constraints
 - => constraints are included in the controller synthesis
- **Cost function:** captures the control objectives (deviations from references, etc)

=> controller design and tuning

• **Numerical optimization:** minimizes the cost function subject to the internal model and constraints

=> yields the optimal control input

- Receding horizon: applies only the first control action of a long plan and repeats this procedure at the next time step
 - => feedback and robustness

Vision for Power Conversion Control Challenges and Solution Approaches

To make the model predictive control concept **applicable** to power electronics, it must be **tailored** to the problem at hand:

- Sampling intervals are very short => Little time to solve the optimization problem
- System inputs are the converter **switch positions** => Integer manipulated variables
- Optimal switching patterns can be pre-computed => Use them in the controller design

Combine control and modulation in one computational stage with model predictive control:

- Avoid the delay of the modulator stage
- Consider the switching characteristic in the controller

Model Predictive Control in Power Electronics Outline

Introduction

- Control and modulation
 - The classic approach in power electronics
- Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)
 Direct model predictive control
 - Model predictive pulse pattern control (MP³C)
 Fast control of optimized pulse patterns (OPPs)
 - Model predictive control of load commutated inverters (LCI)

 Coordinated control with constraints
 - Coordinated control with constrain

Assessment and conclusions

Finite Control Set Model Predictive Control Case Study and Control Problem

Case Study

- Medium-voltage drive
- Three-level NPC inverter with 5.2kV dc-link voltage
- Induction machine with 3.3 kV, 2 MVA and 50 Hz

Control Problem

- Regulate the stator current i_s along its reference i_s* by manipulating the three-phase switch position u
- Minimize the switching frequency

Finite Control Set Model Predictive Control Control Problem Formulation

Cost function:

System model:

$$oldsymbol{x}(\ell+1) = oldsymbol{A}oldsymbol{x}(\ell) + oldsymbol{B}oldsymbol{u}(\ell) \qquad ext{with} \quad oldsymbol{x} = [oldsymbol{i}^T \; oldsymbol{\psi}^T \; \dots \;]^T$$
 $oldsymbol{u} \in \mathbb{Z}^3$

Input constraints:

$$\boldsymbol{u}(\ell) \in \{-1, 0, 1\}^3$$
$$||\boldsymbol{\Delta}\boldsymbol{u}(\ell)||_{\infty} \le 1$$

Minimize the cost function

subject to the evolution of the system model and the input constraints

Finite Control Set Model Predictive Control Enumeration

T. Geyer: MPC in PE 20 Oct. 2020

Finite Control Set Model Predictive Control Enumeration with N = 1

27 combinations

Finite Control Set Model Predictive Control Enumeration with N = 2

 $27^2 = 729$ combinations

Finite Control Set Model Predictive Control Enumeration with N = 3

 $27^3 = 19'700$ combinations

Finite Control Set Model Predictive Control Sphere Decoder

Branch and bound algorithm

- Branching over the set of single-phase switch positions $\mathcal{U} = \{-1, 0, 1\}$ that meet the switching constraint $||\Delta u(\ell)||_{\infty} \leq 1$
- Bounding: consider solutions only within the sphere of radius $\rho(k)$: $||VU(k) - VU_{unc}(k)||_2 \le \rho(k)$

If the radius is exceeded => certificate has been found that the branch is suboptimal

• The sphere is tightened whenever a better solution is found

Example: search tree for horizon N=2

Modified **sphere decoder** solves the integer optimization problem quickly

Finite Control Set Model Predictive Control Steady-State Performance at w=1pu, T=1pu and f_{sw} =250Hz

Finite Control Set Model Predictive Control Steady-State Performance at w=1pu, T=1pu and f_{sw} =250Hz

Long horizons concentrate the **spectral content** (particularly in the common-mode harmonics)

Finite Control Set Model Predictive Control Animation

Drive System:

- 3-level NPC inverter with dc-link voltage $V_{dc} = 5.2 \text{kV}$
- 3.3kV induction machine rated at 2MVA

Operating point:

Nominal speed w=1pu with rated torque T=1pu

Controller parameters:

- Prediction horizon N = 40
- Penalty on switching $\lambda_u = 0.075$
- Sampling interval $T_s = 25$ us

Performance metrics:

- Switching frequency $f_{sw} = 202$ Hz
- Current distortions iTHD = 5.27%

PredCtrl_N40_w1_3L_steadyState.mp4

Finite Control Set Model Predictive Control Drive System with *LC* Filter

- MV induction **machine**: 3.3kV, 2MVA, 50Hz, $X_{\sigma} = 0.25$ pu
- *LC* Filter: X_l = 0.117pu, X_c = 0.336pu, f_{res} = 304Hz
- Sampling **interval**: $T_s = 125 \mu s$

Long prediction horizons enable operation at switching frequencies f_{sw} below 50% of the resonance frequency f_{res}

T. Geyer: MPC in PE 20 Oct. 2020

Finite Control Set Model Predictive Control An Assessment

Benefits:

- Conceptually simple
- Applicable to almost any control problem
- Achieves very fast dynamic response
- Adapts well to "complicated systems", such as *LC* filters, saliency in machines, etc

Limitations:

- Sphere decoding is restricted to linear systems with integer inputs
- A high **sampling frequency** is required
- A non-deterministic harmonic spectrum results with even-order harmonics
 => Not suitable for grid-side converters?

Model Predictive Control in Power Electronics Outline

Introduction

- Control and modulation
 - The classic approach in power electronics
- Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)

 Direct model predictive control
- Model predictive pulse pattern control (MP³C)
 Fast control of optimized pulse patterns (OPPs)
- Model predictive control of load commutated inverters (LCI)
 Coordinated control with constraints

Assessment and conclusions

Optimized Pulse Patterns Optimization Problem and Example

Computation of optimal pulse patterns

- **Given:** The desired voltage amplitude => modulation index m
 - The desired switching frequency => number of switching angles d

Compute the optimal switching angles α_i that minimize the current distortions (for an inductive load)

$$\begin{array}{l} \underset{\alpha_i}{\text{minimize}} \sum_{n=5,7,\dots} \left(\frac{1}{n^2} \sum_{i=1}^d \Delta u_i \cos(n\alpha_i)\right)^2 \\ \text{subject to } \frac{4}{\pi} \sum_{i=1}^d \Delta u_i \cos(\alpha_i) = m \\ 0 \le \alpha_1 \le \alpha_2 \le \dots \le \alpha_d \le \frac{\pi}{2} \end{array}$$

=> Nonlinear optimization problem

G. S. Buja: "Optimum output waveforms in PWM inverters," IEEE Trans. Ind. Appl., Nov./Dec. 1980

Example for 3-level converter

Switching pattern (with *d*=3, quarter- and half-wave sym.):

Optimized Pulse Patterns Difficulties Arising for Linear Controllers

Linear controllers sample the converter current at **regular** sampling instants and manipulate the **modulation index** *m*

Model Predictive Pulse Pattern Control (MP³C) Control Principle

Stator flux trajectory

Stator flux:
$$\boldsymbol{\psi}_s(t) = \boldsymbol{\psi}_s(0) + rac{v_{
m dc}}{2} \int_0^t \boldsymbol{u}_{
m OPP}(\tau) {
m d} au$$

=> Integrate the optimal pulse pattern to derive the optimal stator flux trajectory

Stator flux correction

- Manipulate the time-instants of the switching transitions to correct the stator flux
- · Example: switching transition in phase a

Stator flux reference trajectory is **optimal** (minimizes the current distortions) => **Tracking**

T. Geyer: MPC in PE 20 Oct. 2020 J. Holtz and N. Oikonomou: "Synchronous optimal pulse width modulation and stator flux trajectory control for medium-voltage drives," IEEE Trans. Ind. Appl., Mar./Apr. 2007

Formulate and solve a **model predictive control** problem in real time

T. Geyer, N. Oikonomou, G. Papafotiou and F.D. Kieferndorf: "Model predictive pulse pattern control", IEEE Trans. Ind. Appl., Mar./Apr. 2012.

Model Predictive Pulse Pattern Control (MP³C) Control Problem Formulation

Stator flux error (controlled var.): $\psi_{s,err} = \psi_s^* - \psi_s$ (in $\alpha\beta$)

Switching time modifications (manipulated var.): Δt

=> Model predictive pulse pattern control (**MP**³**C**) of the switching time modifications $\Delta t \in \mathbb{R}^n$

Model Predictive Pulse Pattern Control (MP³C) Optimization Problem

Optimization problem

 $\begin{array}{l} \underset{\Delta t}{\text{minimize}} \quad |\psi_{s,\text{err}} - \psi_{s,\text{corr}}(\Delta t)||_{2}^{2} + \Delta t^{T}Q\Delta t \\ \text{subject to} \quad kT_{s} \leq t_{a1} \leq t_{a2} \leq \ldots \leq t_{an_{a}} \leq t_{a(n_{a}+1)}^{*} \\ \quad kT_{s} \leq t_{b1} \leq t_{b2} \leq \ldots \leq t_{bn_{b}} \leq t_{b(n_{b}+1)}^{*} \\ \quad kT_{s} \leq t_{c1} \leq t_{c2} \leq \ldots \leq t_{cn_{c}} \leq t_{c(n_{c}+1)}^{*} \end{array}$

Solution approaches

- This is a quadratic program (**QP**) in $\Delta t \in \mathbb{R}^n$

=> Solve with an active set or a gradient method

- Or simplify the QP to a **deadbeat** control problem
 - by setting $\boldsymbol{Q} = 0$ and
 - by choosing the minimal horizon N (such that the prediction interval includes at least one switching transition per phase)
- In case of very large flux error: insert additional switching transitions

Model Predictive Pulse Pattern Control (MP³C) Medium-Voltage Lab

3-level neutral point clamped converter:

Model Predictive Pulse Pattern Control (MP³C) Experimental Results (MV Lab)

Steady-state operation:

55% speed, 60% torque

Results obtained by Vedrana Spudic

Up to **50% lower** current distortions for the same switching frequency (or vice versa) => Machine-friendly operation, lower switching frequencies, higher power

Model Predictive Pulse Pattern Control (MP³C) Commercial Benefits

Current TDD vs Switching frequency:

At low pulse numbers:

- Up to 50% lower current distortions or
- Up to 40% lower switching frequency

Additional Benefit of Low Current TDD:

- => Lower switching frequencies for the same harmonic distortions
- => Higher fundamental frequencies at rated power

Higher maximal **power** and extended **market** reach => **Cost reduction**

Model Predictive Pulse Pattern Control (MP³C) Torque Steps (MV Lab)

Dynamic performance similar to Direct Torque Control (DTC)

Model Predictive Pulse Pattern Control (MP³C) Press Release (March 2019)

MEDIUM VOLTAGE AC DRIVES

ABB industrial drives

ACS6080, 5 to 36 MW

ACS6080 medium voltage drives offer high dynamic performance, reliability and safety for demanding applications. On top of ABB's new MP³C control technology, the drive provides easy-to-use interfaces to simplify operation and ABB Ability[™] remote condition monitoring.

https://new.abb.com/drives/medium-voltage-ac-drives/acs6080

Model Predictive Control in Power Electronics Outline

Introduction

- Control and modulation
 - The classic approach in power electronics
- Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)
 Direct model predictive control
- Model predictive pulse pattern control (MP³C)
 - Fast control of optimized pulse patterns (OPPs)

Model predictive control of load commutated inverters (LCI) – Coordinated control with constraints

Assessment and conclusions

Coordinated Control: Load Commutated Inverter Drive Problem Definition

System:

 Load commutated inverter (LCI) with synchronous machine

Model:

- Dc-link dynamic: $L_{dc} \frac{d}{dt} \mathbf{i}_{dc} = V_l \cos(\alpha) V_m \cos(\beta)$
- Electromagnetic torque: $T_e = -i_{dc}\cos(\beta)$

Control objective:

• Regulate the torque T_e and the dc-link current i_{dc} to their references by manipulating the firing angles α and β while respecting constraints

Constraints:

- $0 \le i_{dc} \le i_{dc \max}$
- $\alpha_{\min} \le \alpha \le \alpha_{\max}$ $\beta_{\min} \le \beta \le \beta_{\max}$

T. Besselmann, S. Van de moortel, S. Almer, P. Jörg and J. Ferreau: "Model predictive control in the multi-megawatt range", Trans. on Ind. Electronics, July 2016

Coordinated Control: Load Commutated Inverter Drive Model Predictive Control Formulation

Control platform: PEC 3 (dual core PowerPC with 1.2 GHz)

Sampling interval: 1ms

T. Geyer: MPC in PE 20 Oct. 2020

Coordinated Control: Load Commutated Inverter Drive Experimental Results on LV drive

Low-voltage ride through:

• Linear controller (separate PI control loops for rectifier and inverter) trips when restoring power (i_{dc} too high)

Coordinated Control: Load Commutated Inverter Drive Experimental Results on LV drive

Low-voltage ride through:

- Linear controller (separate PI control loops for rectifier and inverter) trips when restoring power (i_{dc} too high)
- MPC rides through and respects the constraints

Coordinated Control: Load Commutated Inverter Drive Pilot Installations (since Mid 2015)

Kollsnes, Norway

- Processes about 40% of Norway's gas export
- Grid voltage disturbances
- Trips very costly (0.5M\$ per hour)
- Six compressor strings with 41.2 MW LCIs
- All are now controlled by MPC

Kårstø, Norway

- Europe's biggest export port for natural gas liquids
- Three 7.5 MW LCIs in booster compressors are controlled by MPC
- Low-voltage ride through

Commercial benefits

- Improved low-voltage ride through => higher availability
- Lower reactive power => Increased efficiency

Drive System Consulting service Advanced Control Performance Optimization for MEGADRIVE-LCI

Model Predictive Control in Power Electronics Outline

Introduction

- Control and modulation
 - The classic approach in power electronics
- Vision for power conversion control
 - And the case for model predictive control

Control concepts

- Finite control set model predictive control (FCS-MPC)
 Direct model predictive control
- Model predictive pulse pattern control (MP³C)
 - Fast control of optimized pulse patterns (OPPs)
- Model predictive control of load commutated inverters (LCI)
 Coordinated control with constraints

Assessment and conclusions

Model Predictive Control in Power Electronics Milestones

T. Geyer: MPC in PE 20 Oct. 2020 The number of annual publications **doubles every three years**

Model Predictive Control in Power Electronics Conclusions

Commercial benefits of MPC:

- Minimization of the cost per MVA of the power electronic system
- Superior performance during transients and faults
- Operation within the safe operating area
- Reduced effort to design and adapt the controller
- => Cost savings and boost of competitiveness

Challenges:

- Built-up of know-how and productization is time consuming
- Conceptual simplicity is mandatory
- Applicability to the whole product range is a must

An assessment:

- Model predictive control in power electronics has rapidly expanded with significant interest in the academic community
- Control is a potential differentiator and cost saver for industry, so interest in industry is ramping up
- A significant monetary benefit is required to ensure adoption by industry – this is often neglected

=> Look beyond overly simplistic approaches

 Lack of computational power is typically not the limiting factor

Model predictive control for power electronics is still at an early stage despite some success stories

MPC of High Power Electronics and Industrial Drives

Five main parts:

- Introduction: MPC, machines, semiconductors, topologies, MV inverters, requirements, CB-PWM, OPPs, field oriented control, direct torque control
- Direct MPC with reference tracking (FCS-MPC): predictive current control, predictive torque control, integer quadratic programming formulation, sphere decoding, performance evaluation for NPC inverter drive system without and with LC filter
- Direct MPC with bounds: model predictive direct torque control, extension methods, performance evaluation for 3L and 5L inverter drive systems, state-feedback control law, deadlocks, branch and bound methods, model predictive direct current control, model predictive direct power control
- MPC based on PWM: model predictive pulse pattern control, pulse insertion, performance evaluation for NPC inverter drive system, experimental results for 5L inverter drive system, MPC of an MMC using CB-PWM
- Summary and conclusions: performance comparison of direct MPC schemes, assessment, summary and discussion, outlook

