

Wide Band Gap devices for EV charging power stack design

Pradip Chatterjee, Infineon Technologies, Principal Engineer and System Architect

Infineon at a glance

Business Segments Revenue*

Financials

Employees*

Strategy Analytics,

April 2021

Omdia, September 2020

For further information: Infineon Annual Report 2020

Electro-mobility market - key influence factors

To increase sustainability, electrification of mobility is inevitable – in both, private and public transport segment

The EV market is witnessing strong growth driven by more stringent legal guidelines, demanding significant infrastructure investment

Passenger car CO₂ emission development and regional regulations

Source: The International Council on Clean Transportation (ICCT): Passenger vehicle fuel economy. May 2020.

Growing penetration of electro-mobility will drive roll-out of DC charging infrastructure

DC EV charging applications – system requirements for the application

- > Battery charging is a mostly constant current application with typically low demand in dynamics
- > Thermal cycling 10,000 30,000 cycles/year
- > 15 20 years of service
- Ultra-high-power charging > 350 kW
 Up to 1000 V_{DC} and up to 500 A
- Wide variation of DC output voltage
 200 V to 920 V
- > Efficiency target 98% (currently 95%)

DC EV charger as a key interface between grid, car and digital processes

Commonly used topologies for AC/DC conversion

DC/DC power conversion topologies

System Optimization: A tricky balance to achieve

Industrial design, different power topologies as well as component selection can be used to achieve further power density reduction!

Infineon, a Silicon and WBG system technology provider

Benefits of Lower Switching Losses with SiC MOSFETs

SiC MOSFETs – what differentiates them from IGBTs?

Losses per kHz for a 100A Si IGBT and SiC MOSFET at Same Current Level

Maximum Junction Temperature		Maximum June	ction Temperature	
Switch	100.5°C	Switch	116.7°C	
Diode	100.5°C	Diode	99.2°C	
Switching Lo	sses	Switchi	ng Losses	
Switch	0.6W	Switch	6.0W	
Diode	0W	Diode	1.4W	
Conduction Losses		Conduct	tion Losses	
Switch	13.3W	Switch	27.0W	
Diode	2.6W	Diode	5.4W	
Total Losses		Total	Losses	
Switch	13.8W	Switch	33.0W	
Diode	2.6W	Diode	6.8W	
		50400		
FF11MR12W1M1_B11		FS100	R12W217	
SIC MOSFET		IGE	ЗТ	
Switching loss		Switchina loss		
At 1 kHz is 4% of total loss		At 1 kHz is	19% of total loss	

R_{DS(on)} over junction temperature (normalized)

- > Considering the thermal behavior of the $R_{DS(on)}$, CoolSiCTM shows the best performance as the $R_{DS(on)}$ increase over the T_J is much smaller
- Multiplication factor kappa (k) of the typical R_{DS(on)} for hot operation:

Operation temperature $T_{1} = 100 \text{ °C}$

A practical example of a CoolSiC[™]-based EV Charger design

"Softer" transconductance

Larger increase in RDS(on) with temperature so a strong positive feedback

Paralleling Devices to Reduce Conduction Losses

Note loss reduction >50% due to reduced T_i

Why performance increase leads to challenges? Comparing devices @ 50 A, 20 kHz and above

		2xIKW40N120H3	FF23MR12W1M1_B11	
dv/dt	kV/µs	25	100	Faster transients
di/dt	kA/µs	4	11	
Gate drive	V	0/15	-2/15	
Gate charge	μC	0.37	0.12	
Total gate resistor	Ohm	12	3.0	
Total switching losses	mJ	8	0.65	Increased gate
Gate peak current	А	2.5	5.7	peak current
Charge/peak current	ns	150	21	Faster gate charging
Driver losses	W	0.11	0.04	
Driver losses @ increased fs (5x)	W	n/a	0.2	Drive power

U = L * dildt

- > DC-link stray inductance

 → Overvoltage
 11 kA/µs * 10 nH = 110 V

 > Common source side inductance
 → Negative feedback
 11 kA/µs * 0.5 nH = 5.5 V
- Insertion impedance of a current probe
 - \rightarrow Slowing down switching

I = C * dv/dt

- Driver supply stray capacitance
 → Injecting current
 100 kV/µs * 15 pF = 1.5 A
- Overlap of two layers in PCB
 5 cm² with 250 µm distance
 → Injecting current
 100 kV/µs * 78 pF = 7.8 A
- Wrong drive signals due to exceeding drivers common mode immunity
- Additional stress in isolation

Driving CoolSiC[™] MOSFET Information from the datasheet

Gate-Source Spannung Gate-source voltage			V _{GSS}		-10/20		v	
Charakteristische Werte / Charac	teristic Values			min.	typ.	max.		
Einschaltwiderstand Drain-source on resistance	I _D = 50 A V _{GS} = 15 V	$T_{vj} = 25 ^{\circ}C$ $T_{vj} = 125 ^{\circ}C$ $T_{vj} = 150 ^{\circ}C$	R _{DS on}		22,5 29,5 33,0		mΩ	
Gate-Schwellenspannung Gate threshold voltage	$I_{\rm D}$ = 20,0 mA, $V_{\rm DS}$ = $V_{\rm GS},T_{\rm VJ}$ = 25°C (tested after 1ms pulse at $V_{\rm GS}$ = +20 V)		$V_{\text{GS}(\text{th})}$	3,45	4,50	5,55	v	
Einschaltverlustenergie pro Puls Tum-on energy loss per pulse	$ I_D = 50 \text{ A}, V_{DS} = 600 \text{ V}, L\sigma = 35 \text{ nH} \\ di/dt = 11,0 \text{ kA}/\mu \text{s} (T_{vj} = 150 ^\circ\text{C}) \\ V_{GS} = -5 \text{ V} / 15 \text{ V}, R_{Gon} = 1,00 \Omega $	$\begin{array}{l} T_{vj} = 25^{\circ}\text{C} \\ T_{vj} = 125^{\circ}\text{C} \\ T_{vj} = 150^{\circ}\text{C} \end{array}$	Eon		0,49 0,535 0,559		mJ	
Abschaltverlustenergie pro Puls Tum-off energy loss per pulse	$ \begin{array}{l} I_{\rm D} = 50 \; \text{A}, V_{\rm DS} = 600 \; \text{V}, \text{L}\sigma = 35 \; \text{nH} \\ \text{du/dt} = 53,0 \; \text{kV/}\mu\text{s} \; (\text{T}_{\text{vj}} = 150 ^{\circ}\text{C}) \\ \text{V}_{\rm GS} = -5 \; \text{V} \; / \; 15 \; \text{V}, \; \text{R}_{\rm Goff} = 1,00 \; \Omega \end{array} $	$\begin{array}{l} T_{\nu j} = 25^{\circ}\text{C} \\ T_{\nu j} = 125^{\circ}\text{C} \\ T_{\nu j} = 150^{\circ}\text{C} \end{array}$	Eoff		0,094 0,094 0,091		mJ	
Kurzschlußverhalten SC data	$\begin{array}{l} V_{\rm GS} = -5 \; V \; / \; 15 \; V, \; V_{\rm DB} = 800 \; V \\ V_{\rm DSmax} = V_{\rm DSS} \; \text{-} L_{\rm sDS} \; \text{\cdot} di/dt \\ \hline t_{\rm P} \leq 2 \; \mu s \\ R_{\rm G} = 10,0 \; \Omega \end{array}$, T _{vj} = 25°C , T _{vj} = 150°C	_ lac		420 410		A A	

This is the voltage to test and specify $R_{DS(on)}$

Exceeding this might cause immediate destruction

Threshold voltage indicates if turn-off with 0 V might be feasible

For this voltage, SC is specified

This AN provides information on impact of gate voltage on degradation

Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior of the device. The design guidelines described in Application Note AN 2018-09 must be considered to ensure sound operation of the device over the planned lifetime.

But which conclusion do we draw out of this?

Mapping drive voltage to applications								
Application	Positive	Negative						
Discrete, no SC requirement	15 V – 18 V	0 V						
Discrete, SC requirement	15 V	0 V						
Module, drive application (limited speed, SC)	15 V	0 V						
Module, fast application	15 V – 18 V	-2 V – 4 V						
2 nd source application	15 V – 18 V	5 V						

Drive voltage range close to IGBT enables

- > Use of established driver ICs and power supplies
- > Easy use of IGBT and CoolSiC[™] in the same system

Designing a SiC MOSFET like this does not impair performance!

Driving CoolSiC[™] MOSFET Driver output stage requirement

Output peak current

$$I_G = \frac{V_{tot}}{R_G + R_{Gint}}$$

This overestimates required peak current by ignoring:

- > Output impedance
- > Gate inductance
- → Minimum rating of driver with some margin required

Driver output rise time should not slow down gate current rise

 Target 10 ns – 15 ns (for example here)

2	\cap	v	16	21	ì

$$P_{Dr} = f_s * V_{tot} * Q_G$$

 Q_G is a function of V_{tot}

- See diagram in datasheet P_{Dr} is dissipated in:
- > Driver IC
- R_G
 R_{Gint}

Risk of overheating with insufficient output stage

Driving CoolSiC[™] MOSFET Layout considerations

Too high gate inductance will limit di/dt or even cause oscillation

Target (example): 50 nH

Routing in same layer side by side reduces some performance

Current Flow in Both PCB DC Bus Layers

- > Short current paths, small current loops, multiple paths in parallel
- > If possible, current flowing in opposite planes

Where is the System Inductance and How to Reduce it?

Driving CoolSiC[™] MOSFET Layout considerations

Also here the required gate current governs design

Too high gate inductance will limit di/dt or even cause oscillation

Target (example): 50 nH

Board-to-board or board-to-module

Use multiple pins in parallel

Example: FF in Easy 2B

How to Reduce Voltage Overshoots and Oscillations at Turn Off

- Reduce the di/dt level >
- Reduce the loop inductance >

h. Modu In. Chip

240

1400

Driving CoolSiC[™] MOSFET Avoiding parasitic turn-on

By device design

1200 V SIC MOSFET latest generation devices having a nominal on-state resistance of 60-80 mΩ, as per datasheets on supplier web pages September 2019

Negative gate voltage

- > Additional margin
- For modules in fast switching applications

Active Miller Clamp

- Bypass R_{Goff}
- Gain margin for 0 V/15 V driving

30

Synchronous rectification

Typical body diode forward current as function of forward voltage, VGS as parameter (I_{SD} = f(V_{SD}), T_{vi} = 175°C, t_P = 20 µs)

Body diode forward V voltage	, SD	$V_{GS} = 0 V, I_{SD} = 20 A$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 100^{\circ}C$ $T_{vi} = 175^{\circ}C$		4,1 4,0 3,9	5,2 - -	V
---------------------------------	---------	---	--	-------------------	---------------	---

What does synchronous rectification mean?

. .

Moving operating point from diode characteristic to resistive line by applying positive gate bias

How can this be achieved?

Complementary signals for a half-bridge

This is the standard method for gating half-bridges

Deadtime should be minimized

SC protection for CoolSiC[™] Challenges for implementation

Abschaltverlustenergie pro Puls Turn-off energy loss per pulse	$I_D = 25$ A, $V_{DS} = 600$ V, $L_\sigma = 30$ nH du/dt = 41.6 kV/μs ($T_{vj} = 150^{\circ}$ C) $V_{GS} = -5$ V/15 V, $R_{Goff} = 1.00$ Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	E _{off}	0.033 0.035 0.035	mJ
Kurzschlußverhalten SC data	V_{GS} = -5 V/15 V, V_{DD} = 800 V V_{DSmax} = V_{DSS} - L_{sDS} di/dt R_{G} = 10.0 Ω	t _P ≤2 μs, T _{vj} = 25ºC t _P ≤2 μs, T _{vj} = 150ºC	I _{SC}	210 205	A A

- $> >8 \times I_{D nom}$ in 45% of the active area of an IGBT
- SC is specified in the datasheet
 → Need to account for degradation
- > Our limit of 2 µs for module or 3 µs for discrete already considers this!

Ripple Temperature at 5 Hz Operation IGBT & SiC MOSFET

Why bi-directional EV charger solutions are becoming important

Bi-directional EV chargers enable:

- > reverse energy flow from the EV to the grid / home / storage system
- > new charging business models like V2B or V2G

Vehicle to Building (V2B)

 Combination with solar and energy storage systems

Vehicle to Grid (V2G)

- > Peak load levelling
- > Buffer for renewables

Key benefits of the modular subunit reference design concept

For developers For installers and operators Wide DC output voltage range of **200** Less R&D times and efforts through to 920 V complies with all relevant EV universal power conversion approach charging standards and battery types High power conversion efficiency Flexible thermal management allows both air and liquid cooled systems saves energy and cooling efforts **Bi-directional power flow capability** Versatile power control card with automotive grade microcontroller enables new business models

Software for power control with user-friendly interface and options Modular and stackable subunit to realize various high power chargers

Active Front End PFC and a fully isolated Dual Active Bridge DCDC Converter

The reference design concept considers all active and passive components needed to build a complete DC EV charger subunit

* Passive components will not be offered by Infineon

37

Control card will come with power control software and user-friendly GUI

GUI for power control software DC EV Charger MADK TestSW 2<u>1</u>23 D X {<u>ි</u>} infineon (4) **Control Parameters** Variant Configuration **Display Parameters** XLS 0.2 0.1 **Hardware Version** Software Version Parameters based on Phase(R/Y/B) **External Fault Reset Board Clear Fault** STOP **R-Phase DC Bus Voltage** 980 V **DAB** Secondary AFE **DAB** Primarv **AC Voltage Line to Line** 400 V 60 60 60 Phase 1 Current Phase 1 Current Phase 1 Current 55 A **DC Output Current** 60 **AC Current** Phase_2 Current 60 Phase_2 Current 60 60 Phase_2 Current 60 60 60 30 Phase_3 Current Phase 3 Current Phase_3 Current kW **AC Power** 920 V **DC Output Voltage** 80 80 Leg_1 Current 80 Leg_1 Current Leg_1 Current 60 Hz Frequency 80 80 80 Leg_2 Current Leg_2 Current Leg 2 Current Switching Frequency 60 kHz 0.98 AC-DC Converter **Power Factor** 80 80 80 Leg 3 Current Leg_3 Current Leg_3 Current Switching Frequency Total Harmonic Distortion 140 70 70 Leg_1 Temp 70 Leg_1 Temp kHz Leg 1 Temp °C **DC-DC Converter** 70 70 70 Leg 2 Temp Status Indicator °C Leg_2 Temp Leg_2 Temp **Bias Power Supply Status** Precharge Relay Status Communication 70 70 70 Leg_3 Temp Leg 3 Temp C Leg 3 Temp °C Active Discharge Relay Status FAN Status 70 70 70 **Heat Sink Temp** Heat Sink Temp Heat Sink Temp C Fault and Warning Messages 82 DC Bus Voltage-980V AFE PCB Temp-82°C 70 70 PCB Temp PCB Temp **PCB** Temp Ì 70 70 °C Ambient Temp 2 °C Ambient Temp 1

Infineon will offer fully assembled boards for all power conversion stages, a control card incl. software and aux power supply (planned for H1 2022)

We continuously invest in HV Power Switch technologies

LMP Product Lineup: Easy Modules

Application trends are supported by Infineon's comprehensive DC charging ecosystem portfolio

Supporting material for Infineon's EV charging offering

Part of your life. Part of tomorrow.