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Introduction

“51 Billion to Zero:

— 51 billion tons of greenhouse

gases is added annually to the

atmosphere

— Direct air capture will cost ~
§5.1 trillion per year (~ 6% of
the world’s economy).

— Climate neutrality is a
challenge.

*“How to Avoid Climate Disaster” Bill Gates

(2021)
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https://e360.yale.edu/features/deep-decarbonization-a-realistic-way-forward-on-climate-

Global emissions have soared by two-thirds in the three decades since international
climate talks began. To make the reductions required, what’s needed is a new approach
that creates incentives for leading countries and industries to spark transformative

technological revolutions.

David Victor, January 28, 2020

== Smart Grid
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vvvvvvvv Smart Grid and Clean Energy

A smart grid must have certain basic functions for
modernization of the grid (as indicated in the Energy
Independence and Security Act of 2007), including:

Have a self-healing capability.

Be fault-tolerant by resisting attacks.

Allow for dynamic integration of all forms of energy generation and
storage options including plug-in vehicles.

Allow for dynamic optimization of grid operation and
resources with full cyber-security.

Allow for incorporation of demand-response, demand-side
resources and energy-efficient resources.

Allow electricity clients to actively participate in the grid
operations by providing timely information and control
options.

improve reliability, power quality, security and efficiency of
the electricity infrastructure.
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= Big Data Volume, Velocity, Variety, > Big Data
Smart Micro-grids Veracity & Value Smart Power Systems
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Steady-state optimizations (day-ahead /
intra-day / intra-hour) to min. costs with
security constraints

Linear controllers are used to regulate
real-time frequency / voltage deviations

Active Power Control Reactive Power
Control

; 1 ( ] Generator AVRs +
Primary J | Speed Governor | [ Shunt EACTS ]
D t
Seconda ] ( Automatic Generation | { Regional Voltage :f
v Control (AGC) | Control (RVC) !
f"'--""""""" ....
Tertiary Steady-State Optimal Power Flow (OPF) J --------

= Based on SISO linear Pl controllers
= Cannot consider system constraints
= No coordination between AGC and RVC

Typical AGC

1+sT

AGC S

= Steady-state optimization
= Based on forecasts
= Cannot handle fast events
Min C (Pg, V) Typical OPF
s.t. Y Ps = Load
0.95 < Vi (P Vi) < 1.05
Siinek (P Vi) <1

T PGimin < PGi < PGimax

(QGﬁnm <:£2Gi([%} V%ﬂ <:£2Ghmn
AP Gi <AP Gmaxi

Liang J, Venayagamoorthy GK, Harley RG, “Wide-Area Measurement based Dynamic Stochastic Optimal Power Flow Control for

Smart Grids with High Variability and Uncertainty” IEEE Transactions on Smart Grid, Vol. 3, No. 1, March 2012, pp. 59-69




JCLEMSON Traditional Power System Control and
Operation — The Gap

* Challenges from Increasing Penetration of Intermittent
Renewables

— Fast changing rates
— High forecast errors
— Static OPF cannot handle fast events

— AGC/local voltage control cannot guarantee system-wide
security

* Available/Developing Technologies:

— Wide-area monitoring system (PMUs + SCADA)
* What do we do with all these data?

— Many local resources (Gens, FACTS, etc.)
* Can we better control/coordinate them? of local resources

G. Kumar Venayagamoorthy, IEEE East Tennessee PELS/PES Joint Chapter — A Panel on Clean Energy Revolution, April 21, 2021

‘ More short-term variability
and uncertainty

Missing: system-wide
dynamic coordination
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Dynamic Stochastic Optimal Power Flow

* A coordinated AC power flow control solution — replaces AGC and RVC
* Interacts with dynamics of load and local controllers
* Simultaneously considers economy, stability, and security in real-time control

* Handles fast stochastic events (e.g., wind variations, and contingencies)

- MIMO nonlinear optimal control

Traditional Power System
Operation and Control

Power System Operation
and Control with DSOPF

Active Power
Control
( )\

Reactive Power
Control

AC Power Flow Control
p

AVRs + Shunt Generators )
kSpeed Governors) [ EACTS Control ] o e ][ FACTS )
1 e N B 1 1

[ Automatic Generation | Regional Voltage

| ool (AGC) . Ji_ Contral (RVC) J DSOPF Control
1 1 1
Steady-State OPF ] Steady-State OPF
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Presenter
Presentation Notes
Closed-form solution requires analytical plant model
LQR: linear time-invariant systems
LQG: LQR+ Kalman filter, linear time-invariant & time-varying systems
LMPC: linear, time-invariant (prediction horizon), iterative solution of plant
NMPC: time-invariant (prediction horizon), iterative solution of plant


=== |mplementation using Al

e Continuous snapshots are
assumed available from
WAMS
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Applying DSOPF Control to a 70-Bus System

e 70-bus power system: five areas, 18 gens with coal, gas, hydro, and wind
— Full dynamic synchronous generator model for the conventional generation units

— Aggregated DFIG model for the two wind plants
| Area 1 DSOPF Controller U |/Area 2 DSOPF Controller U

f’(’({a tiey I buss T l ﬁ'e'fja Hesy l buss T l gas, furfm bl
g(i' ey I) l) * AV, * st‘mev g(-'n wind rmn‘ ’ \l rn
: el
Mo

freq
Py,
-p | Area 5
<+ AGC

-—p | Area 4
<+ | AGC

=P | Area 3
= | AGC

@Coal @Gas @Hydro @Wlnd LSt AP,
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Per

formance of Area DS

OPF Controllers

Case 1: large wind variation
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Performance of Area DSOPF Controllers

 Case 2: large wind rise
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WCLEMSON Dynamic Energy Management System
(DEMS) for a Smart Micro-Grid

Micro-Grid Operator

Objectives Performance Index RT Pricing

DEMS

Dynamic Energy Management System

UTILITY
PO:ijU Po(1) Pc[,ig(t) PDG(f) > i GRID

V Schedules

Power Flows

States Pez o(?) Po(t) Prez (1) Py Dispatches
G
SOC() Grid Status Py(t) <>

Diesel Generator
10 kW Battery
66.6 kWhr

v
3
P (t)v

4
Pey, sft) § Pyey_s(t) :

§ P ol

\

Ppr(Y) SmartPark

:/w (1)

PP DD DD

30 kW 20.6 kW 26.1 kW 40 kW
Wind Turbine Critical Load Non-Critical Load Photovoltaic

12

G. Kumar Venayagamoorthy, IEEE East Tennessee PELS/PES Joint Chapter — A Panel on Clean Energy Revolution, April 21, 2021



% U N 1 VE R S I TY

Dynamic Energy Management System

Self-sustainable, reliable, environment friendly, and
technology ready for smart grid functionality

The multiple objectives of the I-DEMS are as follows:

Supply the power requirements of the critical loads, Py, p(t), at all times.
This provides 100% reliability with regard to power supply to critical loads.
Maintain the battery SOC at an optimal level (defined by the operator
through a set point for SOC). This ensures and supports meeting the
reliability goal in (i) above.

Maximize controllable load dispatch Pyg; p(t). This means more customer
satisfaction and it creates opportunities for demand-response capability.
Maximize the utilization of renewable energy resources, and minimize the
use of diesel generation and import/export from the grid. This means more
environmental friendly and sustainable operation.

Increase battery life by maximizing battery charging or discharging for a
continuous number of states (each state is the dispatch instant, every
minute in this study) and thus enhanced sustainability by reducing the rate
of replenishing batteries.

G. Kumar Venayagamoorthy, IEEE East Tennessee PELS/PES Joint Chapter — A Panel on Clean Energy Revolution, April 21, 2021
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Al Approach - DEMS

The intelligent dynamic energy management system is based on an action dependent
heuristic dynamic programming (ADHDP) type of adaptive critic design, which is a
neural network based design for optimization over time using the combined concepts
of adaptive dynamic programming and reinforcement learning.

System States ; .
System J(t) = Zy x Ut +1)
States Micro-Grid i=0

Forward Looking Network Ep;n(t) signal
N (Supervisor) /

alttd o

Dispatch | Ey (@),

_ ¢ < N ; C‘ost-to-go( y) + ( y) + Utility
- :s(z; _____ (2) : ?.:3:--?_, Jit) Ut
Balance --25-% - G Vi

— 4

Jit-1)

W

Control
Signals E(t)

DEMS Controller

dJ(t)/dE(r) ~
Adaptive Signal /

U@®) = Ug(8) + Uyer (1) + Up(t) + Up(t) + Ug(t) + Ucy(t)
I-DEMS architecture based on ADHDP framework. - :31;3::;;58%;;33) ::__ ::j;z:jj:;ﬁzglﬁ)i(t)) ++
Ws(O)Xf (Ps®) + weXf (N () +N yyen (1)
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ve———=——Dynamic Energy Management System
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srressiy  Dynamic Energy Management System
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WCLEMSON Dynamic Energy Management System

25% to 30 %
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 New smart grid technologies will play a critical role in advancing
clean energy revolution
- Integration of high-levels (to 100%) of renewable energy
sources such as solar and wind power.

 Atrtificial intelligence will be needed to operate the smart grid in
an effective manner in all aspects.

Venayagamoorthy GK, “Future Grids will not be Controllable without Thinking Machines”, IEEE Smart Grid Newsletter — (letter), October 2011.

Venayagamoorthy GK, "Dynamic, Stochastic, Computational, and Scalable Technologies for Smart Grids," IEEE Computational Intelligence
Magazine, vol.6, no.3, pp.22-35, Aug. 2011.

Venayagamoorthy GK, “Potentials and Promises of Computational Intelligence for Smart Grids”, IEEE Power General Society General Meeting,
Calgary, AB, Canada, July 26-30, 2009, pp. 1-6
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