COBOL: Your Secret To Long
Term Job Security

IEEE FWCS Pace Group
October, 2025

UNIVERSITY OF
SOUTH FLORIDA

1



Welcome To The World of COBOL

COBOL: COmmon Business Orientated Language

Who uses COBOL Today?
Accounting Systems

Banking

Financial Services

Inventory Control

Payroll

Etc.

The World of The 1950's

Scientific Programming
FORTRAN

Business Programming
COBOL

2

Image Source: Wikipedia



Where Did COBOL Come From?

Grace Brewster Hopper was an American computer
scientist, mathematician, and United States Navy
rear admiral.

She was part of the team that developed the
UNIVAC | computer. She managed the development of one
of the first COBOL compilers.

She believed that programming should be simplified with
an English-based computer programming language.

Her compiler converted English terms into machine code
understood by computers.

In 1959, she participated in the CODASYL consortium,
helping to create a machine-independent programming

language called COBOL, which was based on English words.

3

Image Source: Wikipedia



What Was The Big Deal?

FORTRAN was too scientific for business applications
In 1959, programs developed in machine/assembly were not portable.

It was very expensive to develop programs: $800,000 on average for a
program to be developed (in 1959 dollars!).

Porting a program to run on another computer would cost $600,000.

Goals for creating a programming language for business:
— Be flexible and work in Government, Business, Healthcare, etc.
— Be able to handle huge amounts of data on a large scale
— Syntax that resembles everyday English

COBOL was designed to be a high capacity language: it can process
enormous amounts of data.



Why Bother To Learn COBOL?

The reality is that COBOL is the major programming language for business
applications even today.

More that 220 billion lines of COBOL code are still in use which equals
~80% of the world's actively used code.

90% of critical business applications use COBOL.
95% of ATM transactions are handled by COBOL / 60% healthcare records

U.S. Government: Social Security, Department of Defense Payment
Systems, Internal Revenue Service

Every day S3 Trillion worth of transactions are handled by COBOL code.

No — new applications are generally not developed in COBOL. But all of the
existing ones that run the world were developed in COBOL and they have
to be enhanced and maintained...



Average Age Of A COBOL Developer

AVERAGE AGE OF DEVELOPERS

On average, COBOL programmers are most likely to be between 45-55 years old.

Under 35
35-45
45-55
55-60

Over 60

50%



Caution!

Just learning COBOL may not be enough to secure a high paying job
COBOL program often run on Mainframes
To work in a Mainframe environment you also have to know...

JCL

— JCL, or Job Control Language, is a scripting language used primarily on IBM mainframe
computers to define and control the execution of batch jobs.

IMS

— IMS, or Information Management System, is a premier transaction and hierarchical
database management system developed by IBM for mainframes. It's designed for
critical online applications and data requiring high availability, performance, and
integrity.

DB2

— DB2 is a family of database server products developed by IBM. It's a relational database
management system (RDBMS) known for its scalability, reliability, and performance,
particularly in handling large volumes of data.



Components OF The
COBOL Language




Components OF The
COBOL Language

Characters

Reserved Keywords

User Defined Words
Variables, Literals, Structures
Optional Words

Constants

Intrinsic Functions



Characters

e The COBOL language is made ol fpIIADets (i pparicase)
a-z Alphabets (Lower case)
up of characters. — o
« The complete set of characters ‘ e
. ) - Minus (For subtraction) or Hyphen
recognlzed by COBOL s Shown 4 Asterisk (For multiplication)
in the table: / Slant, Stroke or Slash ( For division)
= Equal to sign
$ Dollar (For currency sign)
' Comma
; Semicolon
Decimal point or Period
" Quotation mark
( Left parenthesis
) Right Parenthesis
> Greater than
< Less than
Colon
Note: Single quote = TR




Let’s Talk About Periods

In COBOL, periods (.) serve as statement terminators and logical delimiters—but their
usage has some quirks and historical baggage.

In traditional COBOL, each paragraph, sentence, or section usually ends with a period:

DISPLAY "HELLO, WORLD".
MOVE ZERO TO TOTAL.

A period tells the compiler: "This is the end of a complete statement or block."

When you define a paragraph or section, COBOL expects a period after the last
statement in that block:
MAIN-PARAGRAPH.
DISPLAY "This is the main paragraph".
STOP RUN.

Periods end all open IFs, EVALUATEs, or PERFORMSs, which can lead to logic issues if
placed improperly.

At the end of a division, section, or program, periods can help denote the end of a unit



o Uk W e

Reserved Words In COBOL

Keywords

Optional Words
Figurative Constants
Special Character Words
Special Object Identifiers
Special Registers



Keywords

* Def: Reserved words that are required within a given clause, entry, or
statement. Keywords appear in UPPERCASE.

e Example:
— ADD - add two or more variables
— DELETE — delete a record from a file
— SEARCH - search for a value in an area or a table
— READ —read data from a file
— WRITE — write a record to a file

— CALL —transfer control to a subprogram from the main program

PROCEDURE DIVISION.

MOVE 'Y’ 'O EOF-OF-FILI



COBOL Program Structure




Hierarchical Structure Of A

COBOL Program

4 divisions in a COBOL program:

TR |dentification, Environment, Data, and Procedure.
Divisions

Sections]

Sections contain one or more paragraphs.
They give a program structure

Paragraphs are made
up of one or more
sentences. Can be used

P h as modules called by
aragrapns other modules.

Sentences contain one or more statements Sentences

and end with a period.

Statements start with a verb and a verb shows an action: Statement;

INITIALIZE, SET, SEARCH, MOVE, ADD. Use verbs
with a variable to make a statement.

"
SETSISCIE




Components Of A COBOL Program

Character Digits (0-9), Alphabets (A-Z), Space (b),
Special Characters (+-*/ ()=S$;:;%“><.),)

Word One or more characters- User defined or Reserved
Clause One or more words. It specifies an attribute for an entry
Statement  One or more valid words and clauses

Sentence One or more statements terminated by a period
Paragraph One or more sentences.

Section One or more paragraphs.

Division One or more sections or paragraphs

Program Made up of four divisions

COBOLProgram

 Division

[ Section

(Paragraph

4  Sentence

Statement...




Example Components

Division

Section

Paragraph

— Sentences

Statement



COBOL Coding Rules

In the 1960's, computer programs were created on punch cards which
were then fed into a computer where the cards were read, the program
loaded, and then run.

MASS:WERK DATA CENTER <messwerk.at>

HELLO» WORLD. THIS IS THO-BIT HISTORY. ABCDEFGHIJKLMNOPQRSTUY

00000 0 OODOOO 0O DD 0 | 0000 /000 |00 DO000OOD0D0O00000000000D 00000000000/ 00D
1234856789 wHINERY NRANISEI R0
T T T T I T I I I R eIt I I e e e e e et eI e I ey e 11111 111111111111t/ j1111111111111

22222222222222222/ 122122222/ /22222 /2222222/122222222| /2222222 1222222222| 22222|/222222

33/1/31/3333(/3//3(/3333333|/33333//3333(/333//333(/33333333({/3333333(/333333333(/33333|/3a| 3z

44434444444 44484444343443358398444345349444//4443440434)/494944944 1434494494449 4444844 8

5 55555555555555555555555555555555555555555 |[55555555/ 5555555/ 555555555/ 555555555
6666 66 66666666666666 (666666666 666666666 66666666 6666666 666666666 66666666
1177772177711717777277771217117171217272277112773722727 171717712773/ .712771717717172711111111171711
86688 |6BEBB8 88 BBBB8REEG00888 BBEB8 88888888 56888888 BBEE888 BBEBBS8EE | 8

999 999999 19919999999 /1999 999 99999999999 99999999 5999999 /9999589999999889
788 WIS nno

18

Image Source: IBM



COBOL Program Formatting

Sequence No

| 16 |

Sequence
number is added
to each coding
line when the
program is
compiled.

T
~
"

Continuation, Comments, or form feeds.

Section B

12-72

Used for special
entries such as

DVISION,

SECTION, Used for most COBOL entries, including
Paragraph name PROCEDURE DIVISION sentence.

and some items

of the DATA

Division.

Identification Area

| === 73-80 x|

Used in olden
days for
identification
purpose.

19



Example COBOL Program
s

- SEQNO - COMMENTS AREA A
\\‘ ( '-‘/-
| 16 | 7] & |

AREA B

| 7380 |

r A m i

IDENTIFICATION DIVISION.
PROGRAM-ID. PGMDSPO1.
AUTHOR. Topictrick.
INSTALLATION. Topictrick.
DATE-WRITTEN. ©8/21/2002.
DATE-COMPILED. ©8/21/2002.

: NAME 1in SPOOL.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

.DATA DIVISION.
_FILE SECTION.
.HORKING-STORAGE SECTION.
©1 WS-EMP-NAME.

05 WS-FNAME

05 FILLER
05 WS-LNAME

Line Numbers

PROCEDURE DIVISION.
000-MAIN-LOGIC.

MOVE 'ROGGER' TO WS-FNAME

MOVE 'MURPHY' TO WS-LNAME

DISPLAY 'NAME OF EMPLOYEE :
STOP RUN.

’

PROJ DESC : SAMPLE COBOL PROGRAM TO DISPLAY EMPLOYEE

PIC X(15) VALUE SPACE.
PIC X(01 VALUE SPACE.
PIC X(20) VALUE SPACE.
WS - EMP - NAME

> 1. IDENTIFICATION DIVISION.

2. ENVIRONMENT DIVISION.

> 3. DATA DIVISION.

> 4. PROCEDURE DIVISION.




Free Format COBOL

By default, GhruCOBOL assumes fixed-format unless explicitly told
otherwise.

Modern COBOL (especially with COBOL 2002 and later compilers like
GnuCOBOL or Micro Focus) supports:

No fixed columns

No need for sequence numbers or special column positioning
Indentation and spacing become stylistic, not required
Permits lowercase and modern-style syntax

Source files can use .cbl, .cob, or even .cobol

Image Credit: https://thedatascientist.com/cobols-comeback-can-it-future-proof-your-systems/



Divisions Of A COBOL Program




Overall Structure Of A
COBOL Program

A COBOL program is divided into 4 logical divisions.

Each division is then divided into sections
paragraphs, sentences, and stat

Identification Division (MIANDITORY )
— Used to identify the program to the o

— Used for documentation pur

Environment Division (Optional

— Specify file name and sp
that will be used b

Data Division (Optional)

ific computer equi
rogram

— Describes input/output formats to be used by program

— Define constants and rk areas
Procedure Division {(Optional)

— Contains business logic to process input and create
output



Identification Division

This is the first division in a COBOL program.
It's purpose is to identify the program.
The IDENTIFICATION Division is MANDITORY for a COBOL program.

The paragraph "PROGRAMID." followed by a program name is
MANDITORY.

— The PROGRAMID parameter is used to specify the name of the COBOL
program. It can consist of 1 to 30 characters.

All other paragraphs are optional and are used for documentation:
— AUTHOR

— DATE-WRITTEN IDENTIFICATION DIVISION.
PROGRAM-ID. PGMDSPO1.

— DATE-COMPILED AUTHOR. Topictrick.

— SECURITY INSTALLATION. Topictrick.

DATE-WRITTEN. ©8/21/2002.
DATE-COMPILED. 08/21/2002. o



Environment Division

* This section is related to the program's environment and includes such
items as computer, hardware, and files that will be used.

 Division includes:

— Configuration Section — where the program will be compiled [NOT REQUIRED]
* SOURCE-COMPUTER
* OBJECT-COMPUTER

— Input-Output Section — Files used in the program [REQUIRED]
* FILE-CONTROL
* |-O CONTROL



Data Division

This division lists every data item that will be processed by the program

The variables that will be used in the PROCEDURE Division need to be
declared here.

Data is divided into two separate types: temporary and permanent.

Temporary Data

— Auvailable only during the execution of the program

Permanent

— File section

— Working-storage section
— Linkage section



WORKING STORAGE Section

e Used for declaring user variables or data names.

e \ariable naming standards:

Must start with an alphabetic character

Name should contain between 1-30 alphanumeric characters

No space permitted between characters

No reserved words: ex. TIME, ADD, COMPUTE

Hyphens can be used but cannot be first character and cannot be consecutive

(II__II).
Not case sensitive: TOTAL and ToTal are the same variable.

No special characters: S, #, etc.
DATA DIVISTION.
WORKING-5TORAGE SECTION.
81 COUNTER PIC 9(3) VALUE 6.
81 CUSTOMER-WNAME PIC X(38).
81 TOTAL-AMOUNT PIC 9(5)V99 VALUE 6.



LOCAL STORAGE Section

The Local-Storage Section is like the Working-
Storage Section’s “short-term memory.”

Local-Storage is allocated each time the program is
called and will be de-allocated when the program
stops via an EXIT PROGRAM, GOBACK, or STOP
RUN.

It is defined in the DATA DIVISION after WORKING-
STORAGE SECTION

DATA DIVISION.
LOCAL-STORAGE SECTION.

It’s where you declare variables that: o1 TEMP.VAR  PIC 9(3) VALUE 6.
— Are freshly allocated every time the program,

. PROCEDURE DIVISION.
subprogram, or paragraph is entered.

ADD 1 TO TEMP-VAR
— Are reinitialized to their defined VALUE (or DISPLAY "TEMP-VAR is " TEMP-VAR.

spaces/zeros if no VALUE) on each entry. STOP RUN.
— Do not retain values between calls.



Procedure Division

The Procedure Division is the part of the
program where the actual processing logic is
written — the instructions that tell the
program what to do with the data.

It’s where you:

— Control the flow of execution (using
PERFORM, IF, EVALUATE, GO TO, etc.).

— Perform calculations and data manipulation.

— Handle input/output operations (read from
files, write to files, display output).

— Implement business rules and error handling
(including declaratives).

PROCEDURE DIVISION.
MAIN-PARA.
OPEN INPUT CUSTOMER-FILE
READ CUSTOMER-FILE AT END
DISPLAY "No more records"”
STOP RUN
END-READ
PERFORM PROCESS-RECORD
CLOSE CUSTOMER-FILE
STOP RUN.

PROCESS-RECORD.
DISPLAY "Processing record...”

29



Paragraphs In COBOL Programs

A "paragraph" is a named section of code that performs a specific task within the a
division or a section of the program.

It is typically used within the PROCEDURE DIVISION.

It has a name

It is followed by one or more COBOL statements

Ends when the next paragraph starts or a STOP-RUN or EXIT is encountered.
You can use a PERFORM statement to call/execute a paragraph.

COBOL uses "gravity driven programming"

Execution of a program "falls through" the program until a condition or a GOTO
redirects the flow to a different part of our file.

An "open paragraph" is an example of how we "fall through code"

A "closed paragraph" is executed by name



Paragraphs In COBOL Programs

In a COBOL program, the PROCEDURE Division will consist mainly of a
collection of paragraphs.

These paragraphs are reusable.

When you run a COBOL program, the program will be executed paragraph
by paragraph in sequential order.

To EXECUTE a specific paragraph, the PERFORM clause is used.



Paragraph Example

SubOne.

IS “In Paragraph 1"
PERFORM SubTwo

) ISPLAY "Returned to Paragraph 1"

PERFORM SubFour 2 TIMES.

LOE Y In Paragraph 1

In Paragraph 2

In Paragraph 3

SubThree. Returned to Paragraph
yPLAY "In Paragraph 3". 2

Returned to Paragraph
Y "In Paragraph 2" 1‘ 1
PERFORM SubThree Repeat

"Returned to Paragraph 2".

END—PERFORM

SubTwo.

SubFour.




Strings

UNIVERSITY OF
SOUTH FLORIDA

33



COBOL String Manipulation

o
o
O
O
iy
o

EMPLOYEE NAME AGE DEPARTMENT SALARY
DAVID MURPHY 20 EDU DPT 3,000 €

DAVID MURPHY

wi w
b P
<L g
= =
— -
v

& 2
w —

EMPLOYEE NAME : DAVID, MURPHY

DEPARTMENT NM : EDU

EXTRACT

EMPLOYEE CNT : 2 = davIid
34




COBOL String Handling

STRING Clause: String statements concatenate two or more sending fields
into one receiving field.

— Key words used with the STRING clause:
* STRING
* DELIMITED BY
* WITH POINTER
* END STRING

UNSTRING Clause: the UNSTRING statement unstrings a field into the
fields that are listed in the INTO clause.

INSPECT Clause: The INSPECT statement allows you to count characters in
a field or replace characters in a field.

REFERENCE Modification: The REFERENCE modification feature lets you
refer to a specific location within a field.



String Example

Means copy the entire variable
- all 20 characters, even blanks

Start placing "Vijay Kumar" into WS-CUST-NAME
at location 5.



01 StartNum
01 Nolero
@1 NoZPlusC
91 Dollar
91 BDay P]
@1 ADate

StartNum

Editing Strings

00001123.55.

E 12211974.

0 NoZero

( NoZero

StartNum
/ NoZP1l

StartNum T

Dolla
BDay
LAY ADate

0 NoZPlusC
e
Dollar
-
ADate

1123.55
1,123.55

HATA2355
12/21/1974

37



Editing Strings:

(TNG=S
SampStr
NumChars
NumEs
FName
MName
LName
FLName
FMLName
SStrl
SStr2
Dest

Ptr
SStr3
SStr4

Starting Variables

‘eerie beef sneezed'.

'Martin’.
'Luther King'.
'King'.

"The egqg".
"1s #1 and”.
- "1s the big chicken".




String Processing

SampStr 1 4 VALUE 'eerie beef sneezed'.
NumChars

NumEs

FName 'IC X(6) UE 'Martin'.

MName AK€ | 'ALUE 'Luther King'.

LName TC X(4) VAI '‘King'.

SampStr TALLYING NumEs FOR
"Number of Es : " NumEs.

UPPER—-CASE (SampStr) Number of Characters
LOWER-CASE (SampStr) ¢+ 18

Number of Es : 08
EERIE BEEF SNEEZED
v CT3 eerie beef sneezed
FLName. Martin King

" FLName.
'\ 39

Means "aet the whole thina"

WENE




String Processing

01 FName 4 '‘Martin’.

1 MName L) - 'Luther King'.
01 LName — (4) VAL '‘King'.

01 FLName '

01 FMLName

FLName

MName

*
LName | D BY ¢ Martin Luther King
TO FMLName |

'Overflowed’.

FMLName.



String Processing

01 SStrl ' X(7) VALUE "The egg".
01 SStr2 i - "is #1 and".
01 Dest ' UE "1s the big chicken".

'‘Overt lowed'.

The egg 1s chicken

41



String Processing

"The eqgg".
1S #1 and”.
"is the big chicken".

SR
SStr3, SStr4

SStr4.

42



Numbers In COBOL

UNIVERSITY OF
SOUTH FLORIDA

43



Number Accuracy In COBOL

Most computer languages used floating point calculations.

Problem: this can introduce errors due to how computers represent real
numbers. Example: 01.+0.2 = 0.30000000000000004

COBOL uses fixed point decimal arithmetic.

Fixed point decimal arithmetic is a method of representing numbers that
have a fixed number of digits after the decimal point.

Fixed point keeps the decimal point in a constant position.
Fixed point is precise and quantifiable especially for money and quantities.

COBOL allows you to specify how you want to round values



Financial Calculations

01 Price
P1 TaxRate
@1 FullPrice

"Enter the Price :
Price

IPUTE FullPrice ROUN =
TaxRate)

AY "Price + Tax : " FullPrice.

Price + (Price x

Enter the Price : 4567
.98

Price + Tax : 4910.49

45



COBOL Variable Type Checking

COBOL does not perform strict type checking in the way modern strongly-
typed languages like Java or C++ do.

Instead, COBOL uses a concept called category matching and level number
compatibility to determine whether variables are compatible during
operations like MOVE, arithmetic operations, or procedure calls.

Category Matching COBOL groups data items into categories such as:
Alphabetic (PIC A), Alphanumeric (PIC X), Numeric (PIC 9), Decimal or
Floating-point.

— When using MOVE, COMPUTE, or arithmetic verbs, COBOL checks if the

source and target categories are compatible, not whether their types match
exactly.

Level Numbers: COBOL uses level numbers (01, 05, 77, etc.) to define
structure.

— Operations are valid if level structure allows (e.g., moving a group item to
another of compatible structure).



What COBOL Doesn’t
Strictly Enforce

You can often move an alphanumeric variable to a numeric one, and the
compiler will convert or truncate the data at runtime.

You can pass variables with different PIC clauses to a subprogram and the
compiler won't complain unless CALL is explicitly ... USING BY VALUE or BY
CONTENT.

Example:
01 WS-NUMBER PIC 9(4).

01 WS-TEXT  PIC X(4).
MOVE WS-TEXT TO WS-NUMBER.

This will compile, but may cause runtime issues if WS-TEXT doesn’t
contain digits.



Arithmetic Operations

Arithmetic Operators

Binary Meaning Unary Meaning
Addition . Multiplication by +1
Subtract - Multiplication by -1
Multiplication
/ Division

Exponentiation

\ Safer: COMPUTE RESULT = FUNCTION POW(A,B)

FullPrice ROUNDED = Price + (Price *
TaxRate)

48




Arithmetic Program

01 Numl |
01 Num2

) Numl TO Num2 G
Ans
Numl FROM Num2
/ Ans
Numl BY Num2
AY Ans
E Numl INTO Num2 G
LAY Ans
E Numl INTO Num2

+09.00
-01.00
+20.00

+00.80
Remainder 0.00

 "Remainder " Rem

Handle errors:

"NO MEMORY".

49



Another Arithmetic Program

Numl, Num2 Num3
Numl, Num2, Num3
Ans
Ans Numl + Num?2
Ans = Numl - Num2
Ans = Numl x Num2
Ans = Numl / Num2
Ans

Ans Numl >k 2

Ans
Ans = (3 +5) % 5

Ans
Ans = 3 + 5 x 5

Ans
Ans = 3.0 + 2.005
/ Ans :




Variables

UNIVERSITY OF
SOUTH FLORIDA

51



Constants

Def: a constant is a data item that has only one value.

Example:

01 PIValue CONSTANT AS 3.14.

52



Figurative Constants

* Def: Figurative constants are reserved words that refer to specific constant
values that have been defined by the compiler.

e List of figurative constants:

ZERO

ZEROS|

SPACE /

SPACES

HIGH-VALUE
LOW-VALUE

Functionally identical.
The difference is purely stylistic or contextual—
not semantic.

QUOTE WORKING-STORAGE SECTION.

NULL
ALL

NME PIC X(30) VALUE SPACES.

1 (04) VA ZEROES.

6) : Il ZERO.

53



COBOL Data Types

Data types in COBOL: DAVID MURPHY .30 EDU DEPT _2,000 €
— String
— Charact
— Integer

— Floating
— Boolean

As in Java, C, etc. variables have to have their data type declared prior to
being used.

54



COBOL Data Types

Alphabetic — made up of uppercase/lowercase letters [DAVE MURRY]
Maximum size is 35,535 characters.

Numeric — made up of digits [30].
Maximum number of digits is 18.

Alphanumeric — made up of letters and digits [$S2000].
Maximum size is 35,535 characters.



Variables

Variables are "Data-Name" or "Data Item"
Variable names can contain letters, digits, and "-"
Maximum variable name size: 30 characters

Four pieces of information required to define a variable:
— Level Number
— Variable name
— PICTURE Clause
— Data type



Variable Level Number

* |n COBOL, level numbers specify the hierarchy of data within a record and identify
special-purpose data entries.

 Alevel number begins a data description entry and has value taken from the set of
integers between 1 and 49, or from one of the special-level numbers: 66, 77, or 88.

* The following table shows the significances of the various level numbers that can
be used with data items:

LEVEL NUMBERS

Level Number Meaning
01 For record description
02-49 For fields with records
01/77 For independent items

66 For RENAMES clause

88 For condition names 57



77 Level Numbers

77 is only used for independent data names.

An independent data name refers to a standalone data item.
— Avariable that is not part of any group structure.
— Itis not subordinate to another field.
— Does not contain subordinate fields.
— Has a PIC clause.
— Holds an actual value.

Level 77 is valid but rarely used in modern COBOL.

Most developers just define all data items under 01 level and use
sublevels as needed for grouping.

Note that ANY level is the same as another level assuming that they don't

have any subordinate items.
01 EMP-NAME PIC X (35).

77 EMP-ADD PIC X (40).



COBOL Level 88 Conditions

A condition name is a name that refers to a condition.
To define a condition name, you use an 88 level in the Data Division.

Once defined, the condition name can be used as the condition in an
IF, PERFORM UNTIL, or EVALUATE statement.

Condition names are frequently used with switches and flags.

A condition name is always coded on the 88 level and only has a VALUE
clause associated with it.

Since a condition name is NOT a name of a field, it will not contain a
PICTURE clause.

The condition name must be unique and its VALUE must be a literal
constant with the data type of the field proceeding it.



COBOL Level 88 Conditions Example

Syntax — Condition Names Syntax

88 conditlion-name VALUE IS {literal-1 [THRU] literal-2)

3 Variable can take on one of three different

WORKLNG- STORAGE SM condition names.

MARLTA STA : X )
‘8 v§INGLE V7 E ‘S*.
% e e Variable can have a value of a single

character: S/M/D.

PROCEDURE DIVISION.

A001-MAIN-LOGIC.
88 means that these are condition

SET DIVORCI names — not elements
[ DIVORCED

[ MARTIAL-STATUS ‘S’ THEN
DISPLAY ‘SINGLE’

e D e eet— w




COBOL Level 88 Conditions Example

lQRKING—STORAGE




Group & Elementary Variables

* Group Data Names

A group data name refers to a logical grouping of related fields
(elementary items) under a single name.

Similar to a STRUCT or RECORD in other languages.
These variables are declared without a PIC class.
The first group level is always 01.

Can contain other group data names

Can be moved as a unit

 Elementary Data names

They should always use data levels that are greater than 01

Example:

01 WS-DATE
02 WS-YYYY PIC 9(4)
02 WS-MM PIC 9(2)
02 WS-DD PIC 9(2)



COBOL Group Items

In COBOL, a Group ltems consists of one or more elementary items
(data names). A group item is described by:

— Level number
— Data name
— Value clause

The level numbers must be between 01-49. Typically you will start with 01,
and then use multiples of 5: 5, 10, 15, etc.

Level 01 items must be in the A margin. Other level numbers can begin in
the A or B margins.

You can't code a Picture clause for a group item. Instead, you should to
code a Picture clause for an elementary item.

A group item will always be treated as an alphanumeric item, no matter
how the elementary items beneath it are defined.



COBOL Group Items Examples

PIC

Group variable
WORKING-sTROAGE‘EEEE59g;,,,,——~—*”””'/’ﬂrffﬂﬁfﬂﬂﬂaﬂﬂﬂ
01 WS-TEMP-VAL.

WS-EMP-REC-IN PIC
e g PIC

WS-TOT-CR-AMT PIC S
S=TOT=-DR-AMT PIC S9

05 WS-EMP-DPT PIC

Elementary

01 WS-EMPL-SALARY <« PIC
WORKING-STROAGE SECTION.

PIC

7 , L
shala g LG .

(Vo)
X(12).
9(08)vas

(08)

(30)

ltem

01 WS-EMP-REC. _
§ o W Group variable
05 WS-EMP-NAME.

10 WS-EMP-FNAME PIC
' WIS MDD TAIAS PIC
PIC
PIC

77 TOT-REJ-REC-CNT PIC
01 TOT-REC-CNT PIC

Note: To make the structure
of the group variables easy
to read, you should align the
levels as shown in these
examples.

64



Variable Level Number

"Elements”
Group variable

record descriptioN WORKING-STROAGE SECTION.
01 WS-TEMP-VAL.

Subrecordto 0 {0 0 4 PIC 9 (
WS-TEMP-VAL PIC X (1
01 WS-END-OF-FILE PIC X

Condition names /

WORKING-STROAGE SECTION.
01 WS-EMP-REC.

Group variable . PIC 9(06)
T > WS~-EMP~-NAME .
record description iS-EMP-FNAM PIC X(
PIC XX.
PIC X (14
W. M PIC A(]
WS-EMP-S PIC SS9 X
Independent Iter_n > 77 TOT-REJ-REC-CNT PIC 9(05).
(not a group variable)
Note:

Level 01 & 77 must begin in area A
Levels 02 — 49 can being in Areas Aor B
Level 66 & 88 can being in Areas Aor B

65



Picture Clause

PICTURE Clause

Characters

The Picture clause specifies the
data type and the amount of
storage that is required for a
data item. It is denoted by
PICTURE, often abbreviated as
PIC.

A PICTURE clause is specified
only for elementary data items
and consists of picture
characters. Each picture
character denotes storage to be
reserved for a character of that

type.

The following are the general
picture characters and their
meaning:

Item Type
Alphabetic
Alphanumeric

Numeric

Numeric
Edited

A

< Un O X

Meaning
Alphabetic
Any character
Digits
Sign
Assumed decimal
point
Digit

Zero subpress digit
Inserted comma
Inserted decimal

Minus sign if
negative



Picture Clause Example

Group variable

Store 0 - 99
WORKING-STROAGE S ION. ‘///////////////////////
01 Ws-TEMP-vAL. L Store0-99999

PIC
PIC .
PIC X(12)

GiLZ) .
siC oo Store +/-00000000.00
W M PIC .ﬂi I .
01 WS-EMPL-SALARY PIC

Sign determines if sign will be displayed when printed: +/-

67



WORKING-STROAGE SECTION.

01 WS-EMP-REC.

77 TOT-REJ-REC-CNT
01 TOT-REC-CNT

Note:

« Alphanumeric items: unused spaces to the right are set to spaces

Picture Clause Example

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

Initialized to space

Initialized to zero

* Numeric items: unused spaces to the left are set to "0"

68



Picture Clause Examples

WHB-EDITING-CHAR.

Note: unlike using
— S, the +/- will
always be printed

Note: not supported
by all COBOL
compilers. V is a
better choice




YouTube COBOL References

COBOL 101
https://www.youtube.com/watch?v=cnz9y9k2ijvs

COBOL Tutorial : Learn COBOL in One Video
https://www.youtube.com/watch?v=TBs7HX|76yU

Complete COBOL Refresher in 1 Hour #COBOL
https://www.youtube.com/watch?v=38pNOuGiSmw

COBOL Lesson 1 — Introduction
https://www.youtube.com/watch?v=u9M52sAnrQOs

70



