
COBOL: Your Secret To Long

Term Job Security

IEEE FWCS Pace Group

October, 2025

1

Welcome To The World of COBOL

• COBOL: COmmon Business Orientated Language

• Who uses COBOL Today?

– Accounting Systems

– Banking

– Financial Services

– Inventory Control

– Payroll

– Etc.

2

The World of The 1950's

Scientific Programming Business Programming

FORTRAN COBOL

Image Source: Wikipedia

Where Did COBOL Come From?

• Grace Brewster Hopper was an American computer

scientist, mathematician, and United States Navy

rear admiral.

• She was part of the team that developed the

UNIVAC I computer. She managed the development of one

of the first COBOL compilers.

• She believed that programming should be simplified with

an English-based computer programming language.

• Her compiler converted English terms into machine code

understood by computers.

• In 1959, she participated in the CODASYL consortium,

helping to create a machine-independent programming

language called COBOL, which was based on English words.

3

Image Source: Wikipedia

What Was The Big Deal?

• FORTRAN was too scientific for business applications

• In 1959, programs developed in machine/assembly were not portable.

• It was very expensive to develop programs: $800,000 on average for a

program to be developed (in 1959 dollars!).

• Porting a program to run on another computer would cost $600,000.

• Goals for creating a programming language for business:

– Be flexible and work in Government, Business, Healthcare, etc.

– Be able to handle huge amounts of data on a large scale

– Syntax that resembles everyday English

• COBOL was designed to be a high capacity language: it can process

enormous amounts of data.

4

Why Bother To Learn COBOL?

• The reality is that COBOL is the major programming language for business

applications even today.

• More that 220 billion lines of COBOL code are still in use which equals

~80% of the world's actively used code.

• 90% of critical business applications use COBOL.

• 95% of ATM transactions are handled by COBOL / 60% healthcare records

• U.S. Government: Social Security, Department of Defense Payment

Systems, Internal Revenue Service

• Every day $3 Trillion worth of transactions are handled by COBOL code.

• No – new applications are generally not developed in COBOL. But all of the

existing ones that run the world were developed in COBOL and they have

to be enhanced and maintained…
5

Average Age Of A COBOL Developer

6

Caution!

• Just learning COBOL may not be enough to secure a high paying job

• COBOL program often run on Mainframes

• To work in a Mainframe environment you also have to know…

• JCL

– JCL, or Job Control Language, is a scripting language used primarily on IBM mainframe

computers to define and control the execution of batch jobs.

• IMS

– IMS, or Information Management System, is a premier transaction and hierarchical

database management system developed by IBM for mainframes. It's designed for

critical online applications and data requiring high availability, performance, and

integrity.

• DB2

– DB2 is a family of database server products developed by IBM. It's a relational database

management system (RDBMS) known for its scalability, reliability, and performance,

particularly in handling large volumes of data. 7

Components OF The

COBOL Language

8

Components OF The

COBOL Language

• Characters

• Reserved Keywords

• User Defined Words

• Variables, Literals, Structures

• Optional Words

• Constants

• Intrinsic Functions

9

Characters

• The COBOL language is made

up of characters.

• The complete set of characters

recognized by COBOL is shown

in the table:

10Note: Single quote

Let's Talk About Periods

• In COBOL, periods (.) serve as statement terminators and logical delimiters—but their

usage has some quirks and historical baggage.

• In traditional COBOL, each paragraph, sentence, or section usually ends with a period:

DISPLAY "HELLO, WORLD".

MOVE ZERO TO TOTAL.

• A period tells the compiler: "This is the end of a complete statement or block."

• When you define a paragraph or section, COBOL expects a period after the last

statement in that block:

MAIN-PARAGRAPH.

DISPLAY "This is the main paragraph".

STOP RUN.

• Periods end all open IFs, EVALUATEs, or PERFORMs, which can lead to logic issues if

placed improperly.

• At the end of a division, section, or program, periods can help denote the end of a unit
11

Reserved Words In COBOL

1. Keywords

2. Optional Words

3. Figurative Constants

4. Special Character Words

5. Special Object Identifiers

6. Special Registers

12

Keywords

• Def: Reserved words that are required within a given clause, entry, or

statement. Keywords appear in UPPERCASE.

• Example:

– ADD – add two or more variables

– DELETE – delete a record from a file

– SEARCH – search for a value in an area or a table

– READ – read data from a file

– WRITE – write a record to a file

– CALL – transfer control to a subprogram from the main program

13

COBOL Program Structure

14

Hierarchical Structure Of A

COBOL Program

15

Statements start with a verb and a verb shows an action:

INITIALIZE, SET, SEARCH, MOVE, ADD. Use verbs

with a variable to make a statement.

Sentences contain one or more statements

and end with a period.

Paragraphs are made

up of one or more

sentences. Can be used

as modules called by

other modules.

Sections contain one or more paragraphs.

They give a program structure

4 divisions in a COBOL program:

Identification, Environment, Data, and Procedure.

Components Of A COBOL Program

16

Example Components

17

Division

Section

Paragraph

Sentences

Statement

COBOL Coding Rules

• In the 1960's, computer programs were created on punch cards which

were then fed into a computer where the cards were read, the program

loaded, and then run.

18

Image Source: IBM

COBOL Program Formatting

19

Example COBOL Program

20

Free Format COBOL

• By default, GnuCOBOL assumes fixed-format unless explicitly told

otherwise.

• Modern COBOL (especially with COBOL 2002 and later compilers like

GnuCOBOL or Micro Focus) supports:

– No fixed columns

– No need for sequence numbers or special column positioning

– Indentation and spacing become stylistic, not required

– Permits lowercase and modern-style syntax

– Source files can use .cbl, .cob, or even .cobol

21

Image Credit: https://thedatascientist.com/cobols-comeback-can-it-future-proof-your-systems/

Divisions Of A COBOL Program

22

Overall Structure Of A

COBOL Program

• A COBOL program is divided into 4 logical divisions.

• Each division is then divided into sections,

paragraphs, sentences, and statements.

• Identification Division (MANDITORY)

– Used to identify the program to the operating system

– Used for documentation purpose

• Environment Division (Optional)

– Specify file name and specific computer equipment

that will be used by program

• Data Division (Optional)

– Describes input/output formats to be used by program

– Define constants and work areas

• Procedure Division (Optional)

– Contains business logic to process input and create

output 23

Identification Division

• This is the first division in a COBOL program.

• It's purpose is to identify the program.

• The IDENTIFICATION Division is MANDITORY for a COBOL program.

• The paragraph "PROGRAMID." followed by a program name is

MANDITORY.

– The PROGRAMID parameter is used to specify the name of the COBOL

program. It can consist of 1 to 30 characters.

• All other paragraphs are optional and are used for documentation:

– AUTHOR

– DATE-WRITTEN

– DATE-COMPILED

– SECURITY

24

Environment Division

• This section is related to the program's environment and includes such

items as computer, hardware, and files that will be used.

• Division includes:

– Configuration Section – where the program will be compiled [NOT REQUIRED]

• SOURCE-COMPUTER

• OBJECT-COMPUTER

– Input-Output Section – Files used in the program [REQUIRED]

• FILE-CONTROL

• I-O CONTROL

25

Data Division

• This division lists every data item that will be processed by the program

• The variables that will be used in the PROCEDURE Division need to be

declared here.

• Data is divided into two separate types: temporary and permanent.

• Temporary Data

– Available only during the execution of the program

• Permanent

– File section

– Working-storage section

– Linkage section

26

WORKING STORAGE Section

• Used for declaring user variables or data names.

• Variable naming standards:

– Must start with an alphabetic character

– Name should contain between 1-30 alphanumeric characters

– No space permitted between characters

– No reserved words: ex. TIME, ADD, COMPUTE

– Hyphens can be used but cannot be first character and cannot be consecutive

("--").

– Not case sensitive: TOTAL and ToTaL are the same variable.

– No special characters: $, #, etc.

27

LOCAL STORAGE Section

• The Local-Storage Section is like the Working-

Storage Section’s “short-term memory.”

• Local-Storage is allocated each time the program is

called and will be de-allocated when the program

stops via an EXIT PROGRAM, GOBACK, or STOP

RUN.

• It is defined in the DATA DIVISION after WORKING-

STORAGE SECTION

• It’s where you declare variables that:

– Are freshly allocated every time the program,

subprogram, or paragraph is entered.

– Are reinitialized to their defined VALUE (or

spaces/zeros if no VALUE) on each entry.

– Do not retain values between calls.
28

Procedure Division

• The Procedure Division is the part of the

program where the actual processing logic is

written — the instructions that tell the

program what to do with the data.

• It’s where you:

– Control the flow of execution (using

PERFORM, IF, EVALUATE, GO TO, etc.).

– Perform calculations and data manipulation.

– Handle input/output operations (read from

files, write to files, display output).

– Implement business rules and error handling

(including declaratives).

29

Paragraphs In COBOL Programs

• A "paragraph" is a named section of code that performs a specific task within the a

division or a section of the program.

• It is typically used within the PROCEDURE DIVISION.

• It has a name

• It is followed by one or more COBOL statements

• Ends when the next paragraph starts or a STOP-RUN or EXIT is encountered.

• You can use a PERFORM statement to call/execute a paragraph.

• COBOL uses "gravity driven programming"

• Execution of a program "falls through" the program until a condition or a GOTO

redirects the flow to a different part of our file.

• An "open paragraph" is an example of how we "fall through code"

• A "closed paragraph" is executed by name
30

Paragraphs In COBOL Programs

• In a COBOL program, the PROCEDURE Division will consist mainly of a

collection of paragraphs.

• These paragraphs are reusable.

• When you run a COBOL program, the program will be executed paragraph

by paragraph in sequential order.

• To EXECUTE a specific paragraph, the PERFORM clause is used.

31

Paragraph Example

32

Strings

33

COBOL String Manipulation

34

COBOL String Handling

• STRING Clause: String statements concatenate two or more sending fields

into one receiving field.

– Key words used with the STRING clause:

• STRING

• DELIMITED BY

• WITH POINTER

• END STRING

• UNSTRING Clause: the UNSTRING statement unstrings a field into the

fields that are listed in the INTO clause.

• INSPECT Clause: The INSPECT statement allows you to count characters in

a field or replace characters in a field.

• REFERENCE Modification: The REFERENCE modification feature lets you

refer to a specific location within a field.
35

String Example

36

Means copy the entire variable

- all 20 characters, even blanks

Start placing "Vijay Kumar" into WS-CUST-NAME

at location 5.

Editing Strings

37

Editing Strings: Starting Variables

38

String Processing

39

Means "get the whole thing"

String Processing

40

String Processing

41

String Processing

42

Numbers In COBOL

43

Number Accuracy In COBOL

• Most computer languages used floating point calculations.

• Problem: this can introduce errors due to how computers represent real

numbers. Example: 01.+0.2 = 0.30000000000000004

• COBOL uses fixed point decimal arithmetic.

• Fixed point decimal arithmetic is a method of representing numbers that

have a fixed number of digits after the decimal point.

• Fixed point keeps the decimal point in a constant position.

• Fixed point is precise and quantifiable especially for money and quantities.

• COBOL allows you to specify how you want to round values

44

Financial Calculations

45

COBOL Variable Type Checking

• COBOL does not perform strict type checking in the way modern strongly-

typed languages like Java or C++ do.

• Instead, COBOL uses a concept called category matching and level number

compatibility to determine whether variables are compatible during

operations like MOVE, arithmetic operations, or procedure calls.

• Category Matching COBOL groups data items into categories such as:

Alphabetic (PIC A), Alphanumeric (PIC X), Numeric (PIC 9), Decimal or

Floating-point.

– When using MOVE, COMPUTE, or arithmetic verbs, COBOL checks if the

source and target categories are compatible, not whether their types match

exactly.

• Level Numbers: COBOL uses level numbers (01, 05, 77, etc.) to define

structure.

– Operations are valid if level structure allows (e.g., moving a group item to

another of compatible structure).
46

What COBOL Doesn't

Strictly Enforce

• You can often move an alphanumeric variable to a numeric one, and the

compiler will convert or truncate the data at runtime.

• You can pass variables with different PIC clauses to a subprogram and the

compiler won't complain unless CALL is explicitly ... USING BY VALUE or BY

CONTENT.

• Example:

01 WS-NUMBER PIC 9(4).

01 WS-TEXT PIC X(4).

MOVE WS-TEXT TO WS-NUMBER.

• This will compile, but may cause runtime issues if WS-TEXT doesn’t

contain digits.

47

Arithmetic Operations

48

Safer: COMPUTE RESULT = FUNCTION POW(A,B)

Arithmetic Program

49

Handle errors:

Another Arithmetic Program

50

Variables

51

Constants

• Def: a constant is a data item that has only one value.

• Example:

52

Figurative Constants

• Def: Figurative constants are reserved words that refer to specific constant

values that have been defined by the compiler.

• List of figurative constants:

– ZERO

– ZEROS

– SPACE

– SPACES

– HIGH-VALUE

– LOW-VALUE

– QUOTE

– NULL

– ALL

53

Functionally identical.

The difference is purely stylistic or contextual—

not semantic.

COBOL Data Types

• Data types in COBOL:

– String

– Character

– Integer

– Floating

– Boolean

• As in Java, C, etc. variables have to have their data type declared prior to

being used.

54

COBOL Data Types

• Alphabetic – made up of uppercase/lowercase letters [DAVE MURRY]

Maximum size is 35,535 characters.

• Numeric – made up of digits [30].

Maximum number of digits is 18.

• Alphanumeric – made up of letters and digits [$2000].

Maximum size is 35,535 characters.

55

Variables

• Variables are "Data-Name" or "Data Item"

• Variable names can contain letters, digits, and "-"

• Maximum variable name size: 30 characters

• Four pieces of information required to define a variable:

– Level Number

– Variable name

– PICTURE Clause

– Data type

56

Variable Level Number

• In COBOL, level numbers specify the hierarchy of data within a record and identify

special-purpose data entries.

• A level number begins a data description entry and has value taken from the set of

integers between 1 and 49, or from one of the special-level numbers: 66, 77, or 88.

• The following table shows the significances of the various level numbers that can

be used with data items:

57

LEVEL NUMBERS

MeaningLevel Number

For record description01

For fields with records02-49

For independent items01 / 77

For RENAMES clause66

For condition names88

77 Level Numbers

• 77 is only used for independent data names.

• An independent data name refers to a standalone data item.

– A variable that is not part of any group structure.

– It is not subordinate to another field.

– Does not contain subordinate fields.

– Has a PIC clause.

– Holds an actual value.

• Level 77 is valid but rarely used in modern COBOL.

• Most developers just define all data items under 01 level and use

sublevels as needed for grouping.

• Note that ANY level is the same as another level assuming that they don't

have any subordinate items.

58

COBOL Level 88 Conditions

• A condition name is a name that refers to a condition.

• To define a condition name, you use an 88 level in the Data Division.

• Once defined, the condition name can be used as the condition in an

IF, PERFORM UNTIL, or EVALUATE statement.

• Condition names are frequently used with switches and flags.

• A condition name is always coded on the 88 level and only has a VALUE

clause associated with it.

• Since a condition name is NOT a name of a field, it will not contain a

PICTURE clause.

• The condition name must be unique and its VALUE must be a literal

constant with the data type of the field proceeding it.

59

COBOL Level 88 Conditions Example

60

88 means that these are condition

names – not elements

Variable can take on one of three different

condition names.

Variable can have a value of a single

character: S/M/D.

COBOL Level 88 Conditions Example

61

Group & Elementary Variables

• Group Data Names

– A group data name refers to a logical grouping of related fields

(elementary items) under a single name.

– Similar to a STRUCT or RECORD in other languages.

– These variables are declared without a PIC class.

– The first group level is always 01.

– Can contain other group data names

– Can be moved as a unit

• Elementary Data names

– They should always use data levels that are greater than 01

– Example:

01 WS-DATE

02 WS-YYYY PIC 9(4)

02 WS-MM PIC 9(2)

02 WS-DD PIC 9(2)
62

COBOL Group Items

• In COBOL, a Group Items consists of one or more elementary items

(data names). A group item is described by:

– Level number

– Data name

– Value clause

• The level numbers must be between 01-49. Typically you will start with 01,

and then use multiples of 5: 5, 10, 15, etc.

• Level 01 items must be in the A margin. Other level numbers can begin in

the A or B margins.

• You can't code a Picture clause for a group item. Instead, you should to

code a Picture clause for an elementary item.

• A group item will always be treated as an alphanumeric item, no matter

how the elementary items beneath it are defined.
63

COBOL Group Items Examples

64

Group variable

Elementary

Item

Group variable

Note: To make the structure

of the group variables easy

to read, you should align the

levels as shown in these

examples.

Variable Level Number

65

Note:

• Level 01 & 77 must begin in area A

• Levels 02 – 49 can being in Areas A or B

• Level 66 & 88 can being in Areas A or B

Subrecord to

WS-TEMP-VAL

Group variable

record description

Condition names

"Elements"

Group variable

record description

Independent Item

(not a group variable)

Picture Clause

• The Picture clause specifies the

data type and the amount of

storage that is required for a

data item. It is denoted by

PICTURE, often abbreviated as

PIC.

• A PICTURE clause is specified

only for elementary data items

and consists of picture

characters. Each picture

character denotes storage to be

reserved for a character of that

type.

• The following are the general

picture characters and their

meaning:
66

PICTURE Clause

MeaningCharactersItem Type

AlphabeticAAlphabetic

Any characterXAlphanumeric

Digits9Numeric

SignS

Assumed decimal

point

V

Digit9Numeric

Edited

Zero subpress digitZ

Inserted comma,

Inserted decimal.

Minus sign if

negative

-

Picture Clause Example

67

Group variable

Store 0 - 99

Store 0 – 999,999

Sign determines if sign will be displayed when printed: +/-

Store +/-00000000.00

Store 1.35

Picture Clause Example

68

Initialized to space

Initialized to zero

Note:

• Alphanumeric items: unused spaces to the right are set to spaces

• Numeric items: unused spaces to the left are set to "0"

Picture Clause Examples

69

Note: unlike using

S, the +/- will

always be printed

Note: not supported

by all COBOL

compilers. V is a

better choice

YouTube COBOL References

• COBOL 101

https://www.youtube.com/watch?v=cnz9y9k2jvs

• COBOL Tutorial : Learn COBOL in One Video

https://www.youtube.com/watch?v=TBs7HXI76yU

• Complete COBOL Refresher in 1 Hour #COBOL

https://www.youtube.com/watch?v=38pNOuGiSmw

• COBOL Lesson 1 – Introduction

https://www.youtube.com/watch?v=u9M52sAnrOs

70

