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Welcome To The World of COBOL

• COBOL: COmmon Business Orientated Language

• Who uses COBOL Today?

– Accounting Systems

– Banking

– Financial Services

– Inventory Control

– Payroll

– Etc.
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Where Did COBOL Come From?

• Grace Brewster Hopper was an American computer 

scientist, mathematician, and United States Navy 

rear admiral.

• She was part of the team that developed the 

UNIVAC I computer. She managed the development of one 

of the first COBOL compilers.

• She believed that programming should be simplified with 

an English-based computer programming language. 

• Her compiler converted English terms into machine code 

understood by computers.

• In 1959, she participated in the CODASYL consortium, 

helping to create a machine-independent programming 

language called COBOL, which was based on English words.
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What Was The Big Deal?

• FORTRAN was too scientific for business applications

• In 1959, programs developed in machine/assembly were not portable.

• It was very expensive to develop programs: $800,000 on average for a 

program to be developed (in 1959 dollars!).

• Porting a program to run on another computer would cost $600,000.

• Goals for creating a programming language for business:

– Be flexible and work in Government, Business, Healthcare, etc.

– Be able to handle huge amounts of data on a large scale

– Syntax that resembles everyday English

• COBOL was designed to be a high capacity language: it can process 

enormous amounts of data.
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Why Bother To Learn COBOL?

• The reality is that COBOL is the major programming language for business 

applications even today.

• More that 220 billion lines of COBOL code are still in use which equals 

~80% of the world's actively used code.

• 90% of critical business applications use COBOL.

• 95% of ATM transactions are handled by COBOL / 60% healthcare records

• U.S. Government: Social Security, Department of Defense Payment 

Systems, Internal Revenue Service

• Every day $3 Trillion worth of transactions are handled by COBOL code.

• No – new applications are generally not developed in COBOL. But all of the 

existing ones that run the world were developed in COBOL and they have 

to be enhanced and maintained…
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Average Age Of A COBOL Developer
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Caution!

• Just learning COBOL may not be enough to secure a high paying job

• COBOL program often run on Mainframes

• To work in a Mainframe environment you also have to know…

• JCL

– JCL, or Job Control Language, is a scripting language used primarily on IBM mainframe 

computers to define and control the execution of batch jobs. 

• IMS

– IMS, or Information Management System, is a premier transaction and hierarchical 

database management system developed by IBM for mainframes. It's designed for 

critical online applications and data requiring high availability, performance, and 

integrity.

• DB2

– DB2 is a family of database server products developed by IBM. It's a relational database 

management system (RDBMS) known for its scalability, reliability, and performance, 

particularly in handling large volumes of data. 7



Components OF The 

COBOL Language
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Components OF The 

COBOL Language

• Characters

• Reserved Keywords

• User Defined Words

• Variables, Literals, Structures

• Optional Words

• Constants

• Intrinsic Functions
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Characters

• The COBOL language is made 

up of characters.

• The complete set of characters 

recognized by COBOL is shown 

in the table:

10Note: Single quote



Let's Talk About Periods

• In COBOL, periods (.) serve as statement terminators and logical delimiters—but their 

usage has some quirks and historical baggage. 

• In traditional COBOL, each paragraph, sentence, or section usually ends with a period:

DISPLAY "HELLO, WORLD".

MOVE ZERO TO TOTAL.

• A period tells the compiler: "This is the end of a complete statement or block."

• When you define a paragraph or section, COBOL expects a period after the last 

statement in that block:

MAIN-PARAGRAPH.

DISPLAY "This is the main paragraph".

STOP RUN.

• Periods end all open IFs, EVALUATEs, or PERFORMs, which can lead to logic issues if 

placed improperly.

• At the end of a division, section, or program, periods can help denote the end of a unit
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Reserved Words In COBOL

1. Keywords

2. Optional Words

3. Figurative Constants

4. Special Character Words

5. Special Object Identifiers

6. Special Registers
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Keywords

• Def: Reserved words that are required within a given clause, entry, or 

statement. Keywords appear in UPPERCASE.

• Example:  

– ADD – add two or more variables

– DELETE – delete a record from a file

– SEARCH – search for a value in an area or a table

– READ – read data from a file

– WRITE – write a record to a file

– CALL – transfer control to a subprogram from the main program
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COBOL Program Structure
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Hierarchical Structure Of A 

COBOL Program

15

Statements start with a verb and a verb shows an action:

INITIALIZE, SET, SEARCH, MOVE, ADD. Use verbs

with a variable to make a statement.

Sentences contain one or more statements

and end with a period.

Paragraphs are made 

up of one or more 

sentences. Can be used 

as modules called by 

other modules.

Sections contain one or more paragraphs. 

They give a program structure

4 divisions in a COBOL program: 

Identification, Environment, Data, and Procedure.



Components Of A COBOL Program
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Example Components
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Division

Section

Paragraph

Sentences

Statement



COBOL Coding Rules

• In the 1960's, computer programs were created on punch cards which 

were then fed into a computer where the cards were read, the program 

loaded, and then run.

18

Image Source: IBM



COBOL Program Formatting
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Example COBOL Program
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Free Format COBOL

• By default, GnuCOBOL assumes fixed-format unless explicitly told 

otherwise. 

• Modern COBOL (especially with COBOL 2002 and later compilers like 

GnuCOBOL or Micro Focus) supports:

– No fixed columns

– No need for sequence numbers or special column positioning

– Indentation and spacing become stylistic, not required

– Permits lowercase and modern-style syntax

– Source files can use .cbl, .cob, or even .cobol
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Divisions Of A COBOL Program
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Overall Structure Of A 

COBOL Program

• A COBOL program is divided into 4 logical divisions.

• Each division is then divided into sections, 

paragraphs, sentences, and statements.

• Identification Division (MANDITORY )

– Used to identify the program to the operating system

– Used for documentation purpose

• Environment Division (Optional)

– Specify file name and specific computer equipment 

that will be used by program

• Data Division (Optional)

– Describes input/output formats to be used by program

– Define constants and work areas

• Procedure Division (Optional)

– Contains business logic to process input and create 

output 23



Identification Division

• This is the first division in a COBOL program.

• It's purpose is to identify the program.

• The IDENTIFICATION Division is MANDITORY for a COBOL program.

• The paragraph "PROGRAMID." followed by a program name is 

MANDITORY.

– The PROGRAMID parameter is used to specify the name of the COBOL 

program. It can consist of 1 to 30 characters.

• All other paragraphs are optional and are used for documentation:

– AUTHOR

– DATE-WRITTEN

– DATE-COMPILED

– SECURITY
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Environment Division

• This section is related to the program's environment and includes such 

items as computer, hardware, and files that will be used.

• Division includes:

– Configuration Section – where the program will be compiled [NOT REQUIRED]

• SOURCE-COMPUTER

• OBJECT-COMPUTER

– Input-Output Section – Files used in the program [REQUIRED]

• FILE-CONTROL

• I-O CONTROL
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Data Division

• This division lists every data item that will be processed by the program

• The variables that will be used in the PROCEDURE Division need to be 

declared here.

• Data  is divided into two separate types: temporary and permanent.

• Temporary Data

– Available only during the execution of the program

• Permanent

– File section

– Working-storage section

– Linkage section
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WORKING STORAGE Section

• Used for declaring user variables or data names.

• Variable naming standards:

– Must start with an alphabetic character

– Name should contain between 1-30 alphanumeric characters

– No space permitted between characters

– No reserved words: ex. TIME, ADD, COMPUTE

– Hyphens can be  used but cannot be first character and cannot be consecutive 

("--").

– Not case sensitive: TOTAL and ToTaL are the same variable.

– No special characters: $, #, etc.
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LOCAL STORAGE Section

• The Local-Storage Section is like the Working-

Storage Section’s “short-term memory.”

• Local-Storage is allocated each time the program is 

called and will be de-allocated when the program 

stops via an EXIT PROGRAM, GOBACK, or STOP 

RUN.

• It is defined in the DATA DIVISION after WORKING-

STORAGE SECTION

• It’s where you declare variables that:

– Are freshly allocated every time the program, 

subprogram, or paragraph is entered.

– Are reinitialized to their defined VALUE (or 

spaces/zeros if no VALUE) on each entry.

– Do not retain values between calls.
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Procedure Division

• The Procedure Division is the part of the 

program where the actual processing logic is 

written — the instructions that tell the 

program what to do with the data.

• It’s where you:

– Control the flow of execution (using 

PERFORM, IF, EVALUATE, GO TO, etc.).

– Perform calculations and data manipulation.

– Handle input/output operations (read from 

files, write to files, display output).

– Implement business rules and error handling 

(including declaratives).
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Paragraphs In COBOL Programs

• A "paragraph" is a named section of code that performs a specific task within the a

division or a section of the program.

• It is typically used within the PROCEDURE DIVISION.

• It has a name

• It is followed by one or more COBOL statements

• Ends when the next paragraph starts or a STOP-RUN or EXIT is encountered.

• You can use a PERFORM statement to call/execute a paragraph.

• COBOL uses "gravity driven programming"

• Execution of a program "falls through" the program until a condition or a GOTO 

redirects the flow to a different part of our file.

• An "open paragraph" is an example of how we "fall through code"

• A "closed paragraph" is executed by name
30



Paragraphs In COBOL Programs

• In a COBOL program, the PROCEDURE Division will consist mainly of a 

collection of paragraphs.

• These paragraphs are reusable.

• When you run a COBOL program, the program will be executed paragraph 

by paragraph in sequential order.

• To EXECUTE a specific paragraph, the PERFORM clause is used.
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Paragraph Example
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Strings
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COBOL String Manipulation
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COBOL String Handling

• STRING Clause: String statements concatenate two or more sending fields 

into one receiving field.

– Key words used with the STRING clause:

• STRING

• DELIMITED BY

• WITH POINTER

• END STRING

• UNSTRING Clause: the UNSTRING statement unstrings a field into the 

fields that are listed in the INTO clause.

• INSPECT Clause: The INSPECT statement allows you to count characters in 

a field or replace characters in a field.

• REFERENCE Modification: The REFERENCE modification feature lets you 

refer to a specific location within a field.
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String Example
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Means copy the entire variable

- all 20 characters, even blanks

Start placing "Vijay Kumar" into WS-CUST-NAME

at location 5.



Editing Strings
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Editing Strings: Starting Variables
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String Processing
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Means "get the whole thing"



String Processing
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String Processing
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String Processing
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Numbers In COBOL
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Number Accuracy In COBOL

• Most computer languages used floating point calculations.

• Problem: this can introduce errors due to how computers represent real 

numbers. Example: 01.+0.2 = 0.30000000000000004

• COBOL uses fixed point decimal arithmetic.

• Fixed point decimal arithmetic is a method of representing numbers that 

have a fixed number of digits after the decimal point.

• Fixed point keeps the decimal point in a constant position.

• Fixed point is precise and quantifiable especially for money and quantities.

• COBOL allows you to specify how you want to round values

44



Financial Calculations
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COBOL Variable Type Checking

• COBOL does not perform strict type checking in the way modern strongly-

typed languages like Java or C++ do. 

• Instead, COBOL uses a concept called category matching and level number 

compatibility to determine whether variables are compatible during 

operations like MOVE, arithmetic operations, or procedure calls.

• Category Matching COBOL groups data items into categories such as: 

Alphabetic (PIC A), Alphanumeric (PIC X), Numeric (PIC 9), Decimal or 

Floating-point.

– When using MOVE, COMPUTE, or arithmetic verbs, COBOL checks if the 

source and target categories are compatible, not whether their types match 

exactly.

• Level Numbers: COBOL uses level numbers (01, 05, 77, etc.) to define 

structure.

– Operations are valid if level structure allows (e.g., moving a group item to 

another of compatible structure).
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What COBOL Doesn't 

Strictly Enforce

• You can often move an alphanumeric variable to a numeric one, and the 

compiler will convert or truncate the data at runtime.

• You can pass variables with different PIC clauses to a subprogram and the 

compiler won't complain unless CALL is explicitly ... USING BY VALUE or BY 

CONTENT.

• Example:

01 WS-NUMBER   PIC 9(4).

01 WS-TEXT     PIC X(4).

MOVE WS-TEXT TO WS-NUMBER.

• This will compile, but may cause runtime issues if WS-TEXT doesn’t 

contain digits.

47



Arithmetic Operations
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Safer: COMPUTE RESULT = FUNCTION POW(A,B)



Arithmetic Program
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Handle errors:



Another Arithmetic Program
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Variables
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Constants

• Def: a constant is a data item that has only one value.

• Example:
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Figurative Constants

• Def: Figurative constants are reserved words that refer to specific constant 

values that have been defined by the compiler.

• List of figurative constants:

– ZERO

– ZEROS

– SPACE

– SPACES

– HIGH-VALUE

– LOW-VALUE

– QUOTE

– NULL

– ALL
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Functionally identical. 

The difference is purely stylistic or contextual—

not semantic.



COBOL Data Types

• Data types in COBOL:

– String

– Character

– Integer

– Floating

– Boolean

• As in Java, C, etc. variables have to have their data type declared prior to 

being used.
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COBOL Data Types

• Alphabetic – made up of uppercase/lowercase letters [DAVE MURRY]

Maximum size is 35,535 characters.

• Numeric – made up of digits [30]. 

Maximum number of digits is 18.

• Alphanumeric – made up of letters and digits [$2000]. 

Maximum size is 35,535 characters.
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Variables

• Variables are "Data-Name" or "Data Item"

• Variable names can contain letters, digits, and "-"

• Maximum variable name size: 30 characters

• Four pieces of information required to define a variable:

– Level Number

– Variable name

– PICTURE Clause

– Data type
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Variable Level Number

• In COBOL, level numbers specify the hierarchy of data within a record and identify 

special-purpose data entries.

• A level number begins a data description entry and has value taken from the set of 

integers between 1 and 49, or from one of the special-level numbers: 66, 77, or 88.

• The following table shows the significances of the various level numbers that can 

be used with data items:
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LEVEL NUMBERS

MeaningLevel Number

For record description01

For fields with records02-49

For independent items01 / 77

For RENAMES clause66

For condition names88



77 Level Numbers

• 77 is only used for independent data names.

• An independent data name refers to a standalone data item.

– A variable that is not part of any group structure.

– It is not subordinate to another field.

– Does not contain subordinate fields.

– Has a PIC clause.

– Holds an actual value.

• Level 77 is valid but rarely used in modern COBOL.

• Most developers just define all data items under 01 level and use 

sublevels as needed for grouping.

• Note that ANY level is the same as another level assuming that they don't 

have any subordinate items.
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COBOL Level 88 Conditions

• A condition name is a name that refers to a condition. 

• To define a condition name, you use an 88 level in the Data Division.

• Once defined, the condition name can be used as the condition in an 

IF, PERFORM UNTIL, or EVALUATE statement.

• Condition names are frequently used with switches and flags.

• A condition name is always coded on the 88 level and only has a VALUE 

clause associated with it. 

• Since a condition name is NOT a name of a field, it will not contain a 

PICTURE clause.

• The condition name must be unique and its VALUE must be a literal 

constant with the data type of the field proceeding it.
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COBOL Level 88 Conditions Example

60

88 means that these are condition

names – not elements

Variable can take on one of three different

condition names.

Variable can have a value of a single

character: S/M/D.



COBOL Level 88 Conditions Example
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Group & Elementary Variables

• Group Data Names

– A group data name refers to a logical grouping of related fields 

(elementary items) under a single name.

– Similar to a STRUCT or RECORD in other languages.

– These variables are declared without a PIC class.

– The first group level is always 01.

– Can contain other  group data names

– Can be moved as a unit

• Elementary Data names

– They should always use data levels that are greater than 01

– Example:

01 WS-DATE

02 WS-YYYY PIC 9(4)

02 WS-MM PIC 9(2)

02 WS-DD PIC 9(2)
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COBOL Group Items

• In COBOL, a Group Items consists of one or more elementary items 

(data names). A group item is described by:

– Level number

– Data name

– Value clause

• The level numbers must be between 01-49. Typically you will start with 01, 

and then use multiples of 5: 5, 10, 15, etc.

• Level 01 items must be in the A margin. Other level numbers can begin in 

the A or B margins.

• You can't code a Picture clause for a group item. Instead, you should to

code a Picture clause for an elementary item.

• A group item will always be treated as an alphanumeric item, no matter 

how the elementary items beneath it are defined.
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COBOL Group Items Examples
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Group variable

Elementary

Item

Group variable

Note: To make the structure 

of the group variables easy 

to read, you should align the 

levels as shown in these 

examples.



Variable Level Number
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Note:

• Level 01 & 77 must begin in area A

• Levels 02 – 49 can being in Areas A or B

• Level 66 & 88 can being in Areas A or B

Subrecord to

WS-TEMP-VAL

Group variable

record description

Condition names

"Elements"

Group variable

record description

Independent Item

(not a group variable)



Picture Clause

• The Picture clause specifies the 

data type and the amount of 

storage that is required for a 

data item. It is denoted by 

PICTURE, often abbreviated as 

PIC.

• A PICTURE clause is specified 

only for elementary data items 

and consists of picture 

characters. Each picture 

character denotes storage to be 

reserved for a character of that 

type.

• The following are the general 

picture characters and their 

meaning:
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PICTURE Clause

MeaningCharactersItem Type

AlphabeticAAlphabetic

Any characterXAlphanumeric

Digits9Numeric

SignS

Assumed decimal

point

V

Digit9Numeric 

Edited

Zero subpress digitZ

Inserted comma,

Inserted decimal.

Minus sign if 

negative

-



Picture Clause Example
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Group variable

Store 0 - 99

Store 0 – 999,999

Sign determines if sign will be displayed when printed: +/-

Store +/-00000000.00

Store 1.35



Picture Clause Example
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Initialized to space

Initialized to zero

Note: 

• Alphanumeric items: unused spaces to the right are set to spaces

• Numeric items: unused spaces to the left are set to "0"



Picture Clause Examples
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Note: unlike using

S, the +/- will 

always be printed

Note: not supported

by all COBOL

compilers. V is a 

better choice



YouTube COBOL References

• COBOL 101

https://www.youtube.com/watch?v=cnz9y9k2jvs

• COBOL Tutorial : Learn COBOL in One Video

https://www.youtube.com/watch?v=TBs7HXI76yU

• Complete COBOL Refresher in 1 Hour #COBOL 

https://www.youtube.com/watch?v=38pNOuGiSmw

• COBOL Lesson 1 – Introduction

https://www.youtube.com/watch?v=u9M52sAnrOs
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